Clustering 聚类

密度聚类——DBSCAN

  前面我们已经介绍了两种聚类算法:k-means和谱聚类。今天,我们来介绍一种基于密度的聚类算法——DBSCAN,它是最经典的密度聚类算法,是很多算法的基础,拥有很多聚类算法不具有的优势。今天,小编就带你理解密度聚类算法DBSCAN的实质。

DBSCAN

基础概念

作为最经典的密度聚类算法,DBSCAN使用一组关于“邻域”概念的参数来描述样本分布的紧密程度,将具有足够密度的区域划分成簇,且能在有噪声的条件下发现任意形状的簇。在学习具体算法前,我们先定义几个相关的概念:

  • 邻域:对于任意给定样本x和距离ε,x的ε邻域是指到x距离不超过ε的样本的集合;

  • 核心对象:若样本x的ε邻域内至少包含minPts个样本,则x是一个核心对象;

  • 密度直达:若样本b在a的ε邻域内,且a是核心对象,则称样本b由样本x密度直达;

  • 密度可达:对于样本a,b,如果存在样例p1,p2,...,pn,其中,p1=a,pn=b,且序列中每一个样本都与它的前一个样本密度直达,则称样本a与b密度可达;

  • 密度相连:对于样本a和b,若存在样本k使得a与k密度可达,且k与b密度可达,则a与b密度相连。

光看文字是不是绕晕了?下面我们用一个图来简单表示上面的密度关系:

当minPts=3时,虚线圈表示ε邻域,则从图中我们可以观察到:

  • x1是核心对象;

  • x2由x1密度直达;

  • x3由x1密度可达;

  • x3与x4密度相连。

为什么要定义这些看上去差不多又容易把人绕晕的概念呢?其实ε邻域使用(ε,minpts)这两个关键的参数来描述邻域样本分布的紧密程度,规定了在一定邻域阈值内样本的个数(这不就是密度嘛)。那有了这些概念,如何根据密度进行聚类呢?

DBSCAN聚类思想

  DBSCAN聚类的原理很简单:由密度可达关系导出最大密度相连的样本集合(聚类)。这样的一个集合中有一个或多个核心对象,如果只有一个核心对象,则簇中其他非核心对象都在这个核心对象的ε邻域内;如果是多个核心对象,那么任意一个核心对象的ε邻域内一定包含另一个核心对象(否则无法密度可达)。这些核心对象以及包含在它ε邻域内的所有样本构成一个类。

  那么,如何找到这样一个样本集合呢?一开始任意选择一个没有被标记的核心对象,找到它的所有密度可达对象,即一个簇,这些核心对象以及它们ε邻域内的点被标记为同一个类;然后再找一个未标记过的核心对象,重复上边的步骤,直到所有核心对象都被标记为止。

  算法的思想很简单,但是我们必须考虑一些细节问题才能产出一个好的聚类结果:

  • 首先对于一些不存在任何核心对象邻域内的点,再DBSCAN中我们将其标记为离群点(异常);
  • 第二个是距离度量,如欧式距离,在我们要确定ε邻域内的点时,必须要计算样本点到所有点之间的距离,对于样本数较少的场景,还可以应付,如果数据量特别大,一般采用KD树或者球树来快速搜索最近邻,不熟悉这两种方法的同学可以找相关文献看看,这里不再赘述;
  • 第三个问题是如果存在样本到两个核心对象的距离都小于ε,但这两个核心对象不属于同一个类,那么该样本属于哪一个类呢?一般DBSCAN采用先来后到的方法,样本将被标记成先聚成的类。

DBSCAN算法流程

DBSCAN算法小结

  之前我们学过了kmeans算法,用户需要给出聚类的个数k,然而我们往往对k的大小无法确定。DBSCAN算法最大的优势就是无需给定聚类个数k,且能够发现任意形状的聚类,且在聚类过程中能自动识别出离群点。那么,我们在什么时候使用DBSCAN算法来聚类呢?一般来说,如果数据集比较稠密且形状非凸,用密度聚类的方法效果要好一些。

DBSCAN算法优点:

  1. 不需要事先指定聚类个数,且可以发现任意形状的聚类;

  2. 对异常点不敏感,在聚类过程中能自动识别出异常点;

  3. 聚类结果不依赖于节点的遍历顺序;

DBSCAN缺点:

  1. 对于密度不均匀,聚类间分布差异大的数据集,聚类质量变差;

  2. 样本集较大时,算法收敛时间较长;

  3. 调参较复杂,要同时考虑两个参数;

小结:

基于密度的聚类算法是广为使用的算法,特别是对于任意形状聚类以及存在异常点的场景。上面我们也提到了DBSCAN算法的缺点,但是其实很多研究者已经在DBSCAN的基础上做出了改进,实现了多密度的聚类,针对海量数据的场景,提出了micro-cluster的结构来表征距离近的一小部分点,减少存储压力和计算压力...还有很多先进的密度聚类算法及其应用,相信看完这篇文章再去读相关的论文会比较轻松。

扫码关注

获取有趣的算法知识

聚类——密度聚类DBSCAN的更多相关文章

  1. DBSCAN密度聚类算法

    DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种很典型的密度聚类算法,和K-M ...

  2. 基于密度聚类的DBSCAN和kmeans算法比较

    根据各行业特性,人们提出了多种聚类算法,简单分为:基于层次.划分.密度.图论.网格和模型的几大类. 其中,基于密度的聚类算法以DBSCAN最具有代表性.  场景 一 假设有如下图的一组数据, 生成数据 ...

  3. DBSCAN密度聚类

    1. 密度聚类概念 DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种很典型的密 ...

  4. sklearn聚类模型:基于密度的DBSCAN;基于混合高斯模型的GMM

    1 sklearn聚类方法详解 2 对比不同聚类算法在不同数据集上的表现 3 用scikit-learn学习K-Means聚类 4 用scikit-learn学习DBSCAN聚类 (基于密度的聚类) ...

  5. 吴裕雄 python 机器学习——密度聚类DBSCAN模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...

  6. (数据科学学习手札15)DBSCAN密度聚类法原理简介&Python与R的实现

    DBSCAN算法是一种很典型的密度聚类法,它与K-means等只能对凸样本集进行聚类的算法不同,它也可以处理非凸集. 关于DBSCAN算法的原理,笔者觉得下面这篇写的甚是清楚练达,推荐大家阅读: ht ...

  7. 【转】DBSCAN密度聚类算法

    DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种很典型的密度聚类算法,和K-M ...

  8. 31(1).密度聚类---DBSCAN算法

    密度聚类density-based clustering假设聚类结构能够通过样本分布的紧密程度确定. 密度聚类算法从样本的密度的角度来考察样本之间的可连接性,并基于可连接样本的不断扩张聚类簇,从而获得 ...

  9. 密度聚类 - DBSCAN算法

    参考资料:python机器学习库sklearn——DBSCAN密度聚类,     Python实现DBScan import numpy as np from sklearn.cluster impo ...

随机推荐

  1. B-微积分-sign(符号)函数

    目录 sign(符号)函数 一.sign函数概述 二.python实现sign函数 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:h ...

  2. Focus on the Good 专注于好的方面

    [1]  Dealing with people is like digging for gold. When you go digging for an ounce of gold, you hav ...

  3. .net工作流引擎ccflow开发平台属性功能的隐藏显示介绍

    关键字: 工作流程管理系统 工作流引擎 asp.net工作流引擎 java工作流引擎. 表单引擎 工作流功能说明  工作流设计 工作流快速开发平台   业务流程管理   bpm工作流系统  java工 ...

  4. vc++木马源码免杀一些常用方法

    1.字符串连接 ////////////////////////////////////////////////////////////把字符串"canxin"连接起来(字符串连接 ...

  5. Ajax:后台jquery实现ajax无刷新删除数据及demo

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA8gAAAFSCAIAAAChUmFZAAAgAElEQVR4nO29z4scWZbn2/+Hb30zi8

  6. 概念理解-异步IO

    #include <aio.h> /* 函数名 :int aio_write(struct aiocb *aiocbp) 参 数 :struct aiocb *aiocbp 返回值 :执行 ...

  7. SSH框架项目配置和启动的加载顺序及请求的执行顺序

    1:======配置和启动====== (1)配置web.xml 配置<context-param>,其中内容为Spring的配置文件applicationContext.xml.注意&l ...

  8. Django框架简介与使用注意事项

    一.Django框架简介 MVC框架和MTV框架 MVC框架 MVC,全名是Model View Controller,是软件工程中的一种软件架构模式,把软件系统分为三个基本部分:模型(Model). ...

  9. angular之模块开发二

    一.模块化规范 1.服务器端规范 CommonJS--node.js 2.浏览器端规范 AMD--RequireJS 国外相对流行 CMD--SeaJS 国内相对流行 3.模块化框架实现 CMD实现- ...

  10. fenby C语言 P15

    while(条件表达式){循环体} #include <stdio.h> int main(){ int i=1,sum=0; while(i<6) { sum=sum+i*3; i ...