python之滑动认证(图片)
from PIL import Image, ImageEnhance
from io import BytesIO def cutImg(imgsrc):
"""
根据坐标位置剪切图片
:param imgsrc: 原始图片路径(str)
:param out_img_name: 剪切输出图片路径(str)
:param coordinate: 原始图片上的坐标(tuple) egg:(x, y, w, h) ---> x,y为矩形左上角坐标, w,h为右下角坐标
:return: from PIL import Image
from PIL import ImageEnhance
#原始图像
image = Image.open('lena.jpg')
image.show()
#亮度增强
enh_bri = ImageEnhance.Brightness(image)
brightness = 1.5
image_brightened = enh_bri.enhance(brightness)
image_brightened.show()
#色度增强
enh_col = ImageEnhance.Color(image)
color = 1.5
image_colored = enh_col.enhance(color)
image_colored.show()
#对比度增强
enh_con = ImageEnhance.Contrast(image)
contrast = 1.5
image_contrasted = enh_con.enhance(contrast)
image_contrasted.show()
#锐度增强
enh_sha = ImageEnhance.Sharpness(image)
sharpness = 3.0
image_sharped = enh_sha.enhance(sharpness)
image_sharped.show() """ # image.save(buffered, format="PNG")
# img_str = base64.b64encode(buffered.getvalue()) x=random.randint(100,260)
y=random.randint(0,80)
w=x+40
h=y+40
coordinate=(x,y,w,h) image = Image.open(imgsrc)
region = image.crop(coordinate)
region = ImageEnhance.Contrast(region).enhance(1.0)
# region2 = ImageEnhance.Contrast(region).enhance(0.1)
region2 = ImageEnhance.Brightness(region).enhance(0.5)
region2.show()
buffered = BytesIO()
region.save(buffered, format="PNG")
img_paste = base64.b64encode(buffered.getvalue()).decode()
buffered.close() image.paste(region2, (x, y))
buffered2 = BytesIO()
image.save(buffered2, format="PNG")
img_bg=base64.b64encode(buffered2.getvalue()).decode()
buffered2.close()
封装成方法
import os
from PIL import Image, ImageEnhance
from io import BytesIO
import base64
import random
import uuid def isint(self, *args):
for nb in args:
try:
int(nb)
except Exception as e:
return (False, nb)
return (True, '') # redis key值开头
prefix_str = "phoebe_auth_" imgpath = os.path.join(os.path.dirname(__file__), '..', 'silder_img') #获取滑动认证的图片
def getAuthImage(redis_conn,uid):
if os.path.isdir(imgpath) is False:
return (False,'{} 不存在'.format(imgpath)) img_list = os.listdir(imgpath)
if img_list:
random_img = img_list[random.randint(0, len(img_list) - 1)]
imgscr = os.path.join(imgpath, random_img)
else:
return (False, '{} 不存在'.format(imgpath)) image = Image.open(imgscr)
width = image.size[0]
height = image.size[1]
if width != 300 or height != 110:
return (False,'图片尺寸:300/110'.format(imgscr))
x = random.randint(100, 260)
y = random.randint(0, 70)
w = x + 40
h = y + 40
coordinate = (x, y, w, h) region = image.crop(coordinate)
region = ImageEnhance.Contrast(region).enhance(1.0)
# region2 = ImageEnhance.Contrast(region).enhance(0.1)
region2 = ImageEnhance.Brightness(region).enhance(0.5)
buffered = BytesIO()
region.save(buffered, format="PNG")
img_paste = base64.b64encode(buffered.getvalue()).decode()
buffered.close() image.paste(region2, (x, y))
buffered2 = BytesIO()
image.save(buffered2, format="PNG")
img_bg = base64.b64encode(buffered2.getvalue()).decode()
buffered2.close() redis = redis_conn # 背景图片
redis.set("%s_%s_bg_img" % (prefix_str, uid), img_bg, 30)
# 可移动图片
redis.set("%s_%s_move_img" % (prefix_str, uid), img_paste, 30)
# 可移动图片x,y坐标
redis.set("%s_%s_move_xy" % (prefix_str, uid), '%s,%s' % (x, y), 30)
# 认证失败次数
redis.set("%s_%s_img_error_count" % (prefix_str, uid), 0, 30) data = {
'bg_img': img_bg,
'move_img': img_paste,
'move_y': y
}
return (True,data) #认证图片是否移动到指定位置
def AuthImage(redis_conn, uid,move_x,move_y):
isint_ret = isint(move_x, move_y)
if isint_ret[0] is False:
describe = 'The "%s" data type is int' % (isint_ret[1])
return (False,describe) # 获取x,y坐标
redis=redis_conn r_xy = redis.get("%s_%s_move_xy" % (prefix_str, uid))
if r_xy:
r_xy_list = r_xy.decode().split(',')
r_x = r_xy_list[0]
r_y = r_xy_list[1]
if abs(int(r_x) - int(move_x)) <= 1 and abs(int(r_y) - int(move_y)) <= 1:
redis.delete("%s_%s_bg_img" % (prefix_str, uid))
redis.delete("%s_%s_move_img" % (prefix_str, uid))
redis.delete("%s_%s_move_xy" % (prefix_str, uid))
redis.delete("%s_%s_img_error_count" % (prefix_str, uid))
random_str = str(uuid.uuid1()).replace('-', '')
redis.set("%s_%s_img_randm_str" % (prefix_str, uid), random_str, 30)
return (True,random_str)
else:
error_count = redis.get("%s_%s_img_error_count" % (prefix_str, uid))
if error_count:
error_count = int(error_count.decode())
new_count = error_count + 1
if new_count > 5:
describe = '%s 尝试次数过多' % (uid)
redis.delete("%s_%s_bg_img" % (prefix_str, uid))
redis.delete("%s_%s_move_img" % (prefix_str, uid))
redis.delete("%s_%s_move_xy" % (prefix_str, uid))
redis.delete("%s_%s_img_error_count" % (prefix_str, uid))
return (False,describe,True)
else:
redis.set("%s_%s_img_error_count" % (prefix_str, uid), new_count, 30)
describe = '%s 认证失败' % (uid)
return (False,describe)
else:
describe = '%s 认证失败' % (uid)
return (False,describe,True)
else:
describe = '%s 认证失败' % (uid)
return (False,describe,True)
python之滑动认证(图片)的更多相关文章
- 用 Python 和 OpenCV 检测图片上的条形码
用 Python 和 OpenCV 检测图片上的的条形码 这篇博文的目的是应用计算机视觉和图像处理技术,展示一个条形码检测的基本实现.我所实现的算法本质上基于StackOverflow 上的这个问 ...
- H5+CSS3实现手指滑动切换图片
包含3个文件:html.slider-H5.js.jquery.js(自行下载).在html中可配置滑动参数.具体代码如下: HTML代码: <!DOCTYPE HTML> <htm ...
- ReactNative学习-滑动查看图片第三方组件react-native-swiper
滑动查看图片第三方组件:react-native-swiper,现在的版本为:1.4.3,该版本还不支持Android. 下面介绍的是该组件的一些用法,可能总结的不完整,希望大家一起来共同完善. 官方 ...
- Android:使用ViewPager实现左右滑动切换图片(图上有点点)
在以下实例的基础上加上点点 Android:使用ViewPager实现左右滑动切换图片 (简单版) 效果预览: 因为要把点点放图片上,所以修改布局为相对布局: <?xml version=&qu ...
- Android:使用ViewPager实现左右滑动切换图片 (简单版)
ViewPager,它是google SDk中自带的一个附加包的一个类, 可以使视图滑动. 步骤: 1.引入android-support-v4.jar包,在主布局里加入 <android.su ...
- Python实战:美女图片下载器,海量图片任你下载
Python应用现在如火如荼,应用范围很广.因其效率高开发迅速的优势,快速进入编程语言排行榜前几名.本系列文章致力于可以全面系统的介绍Python语言开发知识和相关知识总结.希望大家能够快速入门并学习 ...
- Python,PIL压缩裁剪图片
自己写了用来压缩 DC 照片的,批量处理整目录文件,非常方便.需要安装 PIL #!/usr/bin/env python import Image import os import os.path ...
- Python爬虫下载美女图片(不同网站不同方法)
声明:以下代码,Python版本3.6完美运行 一.思路介绍 不同的图片网站设有不同的反爬虫机制,根据具体网站采取对应的方法 1. 浏览器浏览分析地址变化规律 2. Python测试类获取网页内容,从 ...
- Python 3 实现色情图片识别
Python 3 实现色情图片识别 项目简介 项目内容 本实验将使用 Python3 去识别图片是否为色情图片,我们会使用到 PIL 这个图片处理库,会编写算法来划分图像的皮肤区域. 项目知识点 Py ...
随机推荐
- cin.get()解密
最近在使用cin.get()函数时遇到了一个迷惑行为,现已解开. 一.cin.get()的用法 char ch; ch = cin.get(); //第1种用法 cin.get(ch); //第2种用 ...
- C++踩坑——用memset对vector进行初始化
在一段程序中,使用memset对vector进行了初始化,然后得到了错误的结果.找这个bug花费了很长时间. vector中有其自身的结构,不能单纯的按字节进行初始化.使用memset对vector进 ...
- NGINX动态增加模块,平滑升级
这是一个小心活,不过,多操作几次,也就熟悉了. 参考URL: https://segmentfault.com/a/1190000006755963 一,安装nginx依赖包. yum install ...
- Windows 压缩文件到 Linux中解压文件名乱码
问题 在Windows中将文件夹压缩后,拿到Ubuntu系统中解压,中文文件名乱码 解决 因为两个系统所使用的编码不同,Windows一般使用GBK编码,Ubuntu使用utf8编码,只需要在解压的时 ...
- Centos 7 自动安装系统-pxe
一.简介 PXE(Pre-boot Execution Environment,预启动执行环境)是由Intel公司开发的最新技术,工作于Client/Server的网络模式,支持工作站通过网络从远端服 ...
- Pwn-pwn-100
题目地址http://www.whalectf.xin/files/2779dd8a2562a1d5653c5c6af9791711/binary_100 32位 ,没有防护 上IDA 很简单的栈溢出 ...
- 剑指offer:二叉搜索树的第k个结点(中序遍历)
1. 题目描述 /* 给定一棵二叉搜索树,请找出其中的第k小的结点. 例如, (5,3,7,2,4,6,8) 中,按结点数值大小顺序第三小结点的值为4. */ 2. 思路 中序遍历二叉搜索树,第K个就 ...
- Loj #2719. 「NOI2018」冒泡排序
Loj #2719. 「NOI2018」冒泡排序 题目描述 最近,小 S 对冒泡排序产生了浓厚的兴趣.为了问题简单,小 S 只研究对 *\(1\) 到 \(n\) 的排列*的冒泡排序. 下面是对冒泡排 ...
- LeetCode 203:移除链表元素 Remove LinkedList Elements
删除链表中等于给定值 val 的所有节点. Remove all elements from a linked list of integers that have value val. 示例: 输入 ...
- vue中toggle切换的3种写法
前言:查看下面代码,在任意编辑器中直接复制粘贴运行即可 1:非动态组件(全局注册2个组件,借用v-if指令和三元表达式) <!DOCTYPE html> <html> < ...