[Tarjan系列] Tarjan算法与有向图的SCC
前面的文章介绍了如何用Tarjan算法计算无向图中的e-DCC和v-DCC以及如何缩点。
本篇文章资料参考:李煜东《算法竞赛进阶指南》
这一篇我们讲如何用Tarjan算法求有向图的SCC( 强连通分量 )已经如何缩点。
给定一张有向图,若对于图中任意两个节点x和y,
既有x到y的路径,又有y到x的路径,则该有向图是一张“强连通图”。
有向图的极大连通子图被称为“强连通分量”,即SCC。
一个环一定是强连通图。如果既有x到y的路径,又有y到x的路径,那么x和y就一定在一个环中。
这就是Tarjan算法的原理:对于每个点x,找到与它一起能构成环的所有点。
下面介绍有向图中的三种边(x,y):
1. 树枝边:搜索树中x是y的父节点
2. 前向边:搜索树中x是y的祖先节点
3. 后向边:搜索树中y是x的祖先节点
4. 横叉边:除了以上三种情况外的边,满足dfn[y]<dfn[x]
这里只给出简单定义,不再赘述。
我们可以发现,用Tarjan算法求SCC时,后向边(x,y)可以和搜索树上从y到x的路径构成一个环。
除后向边外,通过横叉边也可能找到一条从y出发能回到x的祖先节点的路径。
那么为了找到通过横叉边和后向边构成的环,Tarjan算法在dfs的过程中维护一个栈,当访问到节点x时,栈中需要保存以下两类节点:
1. 搜索树上x的祖先节点,记为集合anc(x)。设y∈anc(x),若存在一条后向边(x,y),则(x,y)和y到x之间的路径一起形成环。
2. 已经访问过,并且存在一条路径到达anc(x)的节点。
设z时一个这样的点,从z出发存在一条路径到达y∈anc(x)。若存在横叉边(x,y),则(x,z)、z到y的路径、y到x的路径形成一个环。
综上,栈中的节点就是能从x出发点的“后向边”和“横叉边”形成环的节点。
至此,我们引入追溯值low[x]的概念,有向图的Tarjan算法里面的定义和无向图是不一样的。
还是设subtree(x)表示以x为根的子树。x的追溯值low[x]定义为满足一下条件的节点的最小dfn:
1. 该点在栈中 2. 存在一条从subtree(x)出发的有向边,以该点为终点
根据以上定义,Tarjan算法根据以下步骤计算low[x]:
1. 当节点x第一次被访问时,将x入栈,初始化low[x]=dfn[x]
2. 扫描从头x出发的每条边(x,y),若y没被访问过,则说明(x,y)时树枝边,递归访问y,从y回溯之后,令low[x]=min(low[x],low[y]),若y被访问过且y在栈中,令low[y]=min(low[x],dfn[y])
3. 从x回溯之前,判断是否有low[x]=dfn[x],若成立,则不断从栈中弹出节点直至x出栈。
SCC的判定法则:
在上面的计算步骤3中,从栈中从x到栈顶的所有节点构成一个SCC。
少废话,上代码!
好der~
#include<bits/stdc++.h>
#define N 1000010
using namespace std;
inline int read(){
int data=,w=;char ch=;
while(ch!='-' && (ch<''||ch>''))ch=getchar();
if(ch=='-')w=-,ch=getchar();
while(ch>='' && ch<='')data=data*+ch-'',ch=getchar();
return data*w;
}
struct Edge{
int nxt,to;
#define nxt(x) e[x].nxt
#define to(x) e[x].to
}e[N<<];
int head[N],tot=;
inline void addedge(int f,int t){
nxt(++tot)=head[f];to(tot)=t;head[f]=tot;
}
int dfn[N],low[N],stk[N],ins[N],c[N];
vector<int> scc[N];
int n,m,cnt,top,num;
void tarjan(int x){
dfn[x]=low[x]=++cnt;
stk[++top]=x,ins[x]=;
for(int i=head[x];i;i=nxt(i)){
int y=to(i);
if(!dfn[y]){
tarjan(y);
low[x]=min(low[x],low[y]);//搜索树上的点
}else if(ins[y])
low[x]=min(low[x],dfn[y]);//y在栈中且y被访问过了
}
if(dfn[x]==low[x]){
num++;int z;//新的一个SCC
do{
z=stk[top--],ins[z]=;//弹出栈顶元素z
c[z]=num,scc[num].push_back(z);//z插入存第num个SCC的vector里
}while(z!=x);//直到x被弹出栈
}
}
int main(){
n=read();m=read();
for(int i=;i<=m;i++){
int x=read(),y=read();
addedge(x,y);
}
for(int i=;i<=n;i++)
if(!dfn[i])tarjan(i);
for(int i=;i<=num;i++){
printf("%d:",i);
for(int j=;j<scc[i].size();j++){
printf(" %d",scc[i][j]);
}
putchar();
}
return ;
}
SCC的缩点就非常简单了,上面我们已经用c[x]储存了每个点所在的SCC的编号,那我们直接类似e-DCC的缩点,把每个SCC缩成一个点,若c[x]≠c[y],我们就在编号为c[x]和c[y]的SCC中连一条边就可以得到一个有向无环图( DAG )。
代码真的非常简单,甚至不需要再跑一遍dfs。
给出代码:
for(int x=;x<=n;x++)
for(int i=head[x];i;i=nxt(i)){
int y=to(i);
if(c[x]==c[y])continue;
addedge_c(c[x],c[y]);
}
//够简单了吧...
整个程序的代码我就不贴出来了,建新图和我前面e-DCC缩点的博客完全一致。
下一篇讲点数学,别忘了来听课。
[Tarjan系列] Tarjan算法与有向图的SCC的更多相关文章
- [Tarjan系列] Tarjan算法求无向图的桥和割点
RobertTarjan真的是一个传说级的大人物. 他发明的LCT,SplayTree这些数据结构真的给我带来了诸多便利,各种动态图论题都可以用LCT解决. 而且,Tarjan并不只发明了LCT,他对 ...
- [Tarjan系列] Tarjan算法求无向图的双连通分量
这篇介绍如何用Tarjan算法求Double Connected Component,即双连通分量. 双联通分量包括点双连通分量v-DCC和边连通分量e-DCC. 若一张无向连通图不存在割点,则称它为 ...
- Tarjan算法求有向图强连通分量并缩点
// Tarjan算法求有向图强连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> #inc ...
- [Tarjan系列] 无向图e-DCC和v-DCC的缩点
上一篇讲了如何应用Tarjan算法求出e-DCC和v-DCC. 那么这一篇就是e-DCC和v-DCC的应用之一:缩点. 先讲e-DCC的缩点. 我们把每一个e-DCC都看成一个节点,把所有桥边(x,y ...
- Kosaraju 算法检测有向图的强连通性
给定一个有向图 G = (V, E) ,对于任意一对顶点 u 和 v,有 u --> v 和 v --> u,亦即,顶点 u 和 v 是互相可达的,则说明该图 G 是强连通的(Strong ...
- HDU 1269 -- 迷宫城堡【有向图求SCC的数目 && 模板】
迷宫城堡 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...
- 【数据结构与算法】多种语言(VB、C、C#、JavaScript)系列数据结构算法经典案例教程合集目录
目录 1. 专栏简介 2. 专栏地址 3. 专栏目录 1. 专栏简介 2. 专栏地址 「 刘一哥与GIS的故事 」之<数据结构与算法> 3. 专栏目录 [经典回放]多种语言系列数据结构算法 ...
- Tarjan系列算法总结(hdu 1827,4612,4587,4005)
tarjan一直是我看了头大的问题,省选之前还是得好好系统的学习一下.我按照不同的算法在hdu上选题练习了一下,至少还是有了初步的认识.tarjan嘛,就是维护一个dfsnum[]和一个low[],在 ...
- tarjan算法-解决有向图中求强连通分量的利器
小引 看到这个名词-tarjan,大家首先想到的肯定是又是一个以外国人名字命名的算法.说实话真的是很佩服那些算法大牛们,佩服得简直是五体投地啊.今天就遇到一道与求解有向图中强连通分量的问题,我的思路就 ...
随机推荐
- 了解一下Java SPI的原理
了解一下Java SPI的原理 1 为什么写这篇文章? 近期,本人在学习dubbo相关的知识,但是在dubbo官网中有提到Java的 SPI,这个名词之前未接触过,所以就去看了看,感觉还是有很多地方有 ...
- Flask中的路由、实例化参数和config配置文件
Flask中的路由 endpoint 别名不能重复,对应的视图函数,默认是视图函数名.endpoint 才是路由的核心.视图函数与路由的对应关系.可以通过url_for 反向创建url # metho ...
- Java 世界的盘古和女娲 —— Zygote
本文基于 Android 9.0 , 代码仓库地址 : android_9.0.0_r45 文中源码链接: Zygote.java ZygoteInit.java ZygoteServer.java ...
- 数据分析--pandas的基本使用
一.pandas概述 1.pandas是一个强大的Python数据分析的工具包,是基于NumPy构建的. 2.pandas的主要功能 具备对其功能的数据结构DataFrame.Series 集成时间序 ...
- python学习笔记之zipfile模块
为什么学习: 在做自动化测试平台的apk上传功能部分时候,涉及到apk上传后提取apk的icon图标,通过aapt解析apk,获取对应icon在apk中的地址,通过python的zipfile模块来解 ...
- JVM 调优 - jmap
Java命令学习系列(三)——Jmap 2015-05-16 分类:Java 阅读(17065) 评论(9) 阿里大牛珍藏架构资料,点击链接免费获取 Jmap jmap是JDK自带的工具软件,主要用于 ...
- 在vue的mounted下使用setInterval的误区
1. vue对象的生命周期 1). 初始化显示(只执行一次) * beforeCreate() * created() * beforeMount() * mounted() 2). 更新状态(可执行 ...
- Go语言操作MySQL
MySQL是常用的关系型数据库,本文介绍了Go语言如何操作MySQL数据库. Go操作MySQL 连接 Go语言中的database/sql包提供了保证SQL或类SQL数据库的泛用接口,并不提供具体的 ...
- 面试题解析|ACL权限控制机制
ACL(Access Control List)访问控制列表 包括三个方面: 一.权限模式(Scheme) 1.IP:从 IP 地址粒度进行权限控制 2.Digest:最常用,用类似于 usernam ...
- dedecms织梦二次开发报名表单模块插件安装及配置详细教程
网上找了很多,都不是太满意,功能不全不全不说,还没有详细的安装配置教程,经过自己的折腾,成功了修改程序并配置成功,亲测,试用没有问题!所以,决定给大家出一个针对新手的详细教程. 废话不多,直接上干货. ...