Pandas | 17 缺失数据处理
数据丢失(缺失)在现实生活中总是一个问题。 机器学习和数据挖掘等领域由于数据缺失导致的数据质量差,在模型预测的准确性上面临着严重的问题。 在这些领域,缺失值处理是使模型更加准确和有效的重点。
使用重构索引(reindexing),创建了一个缺少值的DataFrame。 在输出中,NaN表示不是数字的值。
一、检查缺失值
为了更容易地检测缺失值(以及跨越不同的数组dtype),Pandas提供了isnull()和notnull()函数,它们也是Series和DataFrame对象的方法
示例1
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(5, 3),
index=['a', 'c', 'e', 'f','h'],
columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print(df)
print('\n') print (df['one'].isnull())
输出结果:
one two three
a 0.036297 -0.615260 -1.341327
b NaN NaN NaN
c -1.908168 -0.779304 0.212467
d NaN NaN NaN
e 0.527409 -2.432343 0.190436
f 1.428975 -0.364970 1.084148
g NaN NaN NaN
h 0.763328 -0.818729 0.240498 a False
b True
c False
d True
e False
f False
g True
h False
Name: one, dtype: bool
示例2
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print (df['one'].notnull())
输出结果:
a True
b False
c True
d False
e True
f True
g False
h True
Name: one, dtype: bool
二、缺少数据的计算
- 在求和数据时,
NA将被视为0 - 如果数据全部是
NA,那么结果将是NA
实例1
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print(df)
print('\n') print (df['one'].sum())
输出结果:
one two three
a -1.191036 0.945107 -0.806292
b NaN NaN NaN
c 0.127794 -1.812588 -0.466076
d NaN NaN NaN
e 2.358568 0.559081 1.486490
f -0.242589 0.574916 -0.831853
g NaN NaN NaN
h -0.328030 1.815404 -1.706736 0.7247067964060545
示例2
import pandas as pd df = pd.DataFrame(index=[0,1,2,3,4,5],columns=['one','two']) print(df)
print('\n') print (df['one'].sum())
输出结果:
one two
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 NaN NaN
4 NaN NaN
5 NaN NaN 0
三、填充缺少数据
Pandas提供了各种方法来清除缺失的值。fillna()函数可以通过几种方法用非空数据“填充”NA值。
用标量值替换NaN
以下程序显示如何用0替换NaN。
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(3, 3), index=['a', 'c', 'e'],columns=['one','two', 'three']) df = df.reindex(['a', 'b', 'c'])
print (df)
print('\n') print ("NaN replaced with '0':")
print (df.fillna(0))
输出结果:
one two three
a -0.479425 -1.711840 -1.453384
b NaN NaN NaN
c -0.733606 -0.813315 0.476788
NaN replaced with '0':
one two three
a -0.479425 -1.711840 -1.453384
b 0.000000 0.000000 0.000000
c -0.733606 -0.813315 0.476788
在这里填充零值; 当然,也可以填写任何其他的值。
替换丢失(或)通用值
很多时候,必须用一些具体的值取代一个通用的值。可以通过应用替换方法来实现这一点。用标量值替换NA是fillna()函数的等效行为。
示例
import pandas as pd
df = pd.DataFrame({'one':[10,20,30,40,50,2000],'two':[1000,0,30,40,50,60]})
print(df)
print('\n')
print (df.replace({1000:10,2000:60}))
输出结果:
one two
0 10
1 20 0
2 30 30
3 40 40
4 50 50
5 60 one two
0 10
1 20 0
2 30 30
3 40 40
4 50 50
5 60
填写NA前进和后退
使用重构索引章节讨论的填充概念,来填补缺失的值。
| 方法 | 动作 |
|---|---|
pad/fill |
填充方法向前 |
bfill/backfill |
填充方法向后 |
示例1
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print(df)
print('\n') print (df.fillna(method='pad'))
输出结果:
one two three
a -0.023243 1.671621 -1.687063
b NaN NaN NaN
c -0.933355 0.609602 -0.620189
d NaN NaN NaN
e 0.151455 -1.324563 -0.598897
f 0.605670 -0.924828 -1.050643
g NaN NaN NaN
h 0.892414 -0.137194 -1.101791 one two three
a -0.023243 1.671621 -1.687063
b -0.023243 1.671621 -1.687063
c -0.933355 0.609602 -0.620189
d -0.933355 0.609602 -0.620189
e 0.151455 -1.324563 -0.598897
f 0.605670 -0.924828 -1.050643
g 0.605670 -0.924828 -1.050643
h 0.892414 -0.137194 -1.101791
示例2
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print (df.fillna(method='backfill'))
输出结果:
one two three
a 2.278454 1.550483 -2.103731
b -0.779530 0.408493 1.247796
c -0.779530 0.408493 1.247796
d 0.262713 -1.073215 0.129808
e 0.262713 -1.073215 0.129808
f -0.600729 1.310515 -0.877586
g 0.395212 0.219146 -0.175024
h 0.395212 0.219146 -0.175024
四、丢失缺少的值
使用dropna函数和axis参数。 默认情况下,axis = 0,即在行上应用,这意味着如果行内的任何值是NA,那么整个行被排除。
实例1
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f','h'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print (df.dropna())
输出结果 :
one two three
a -0.719623 0.028103 -1.093178
c 0.040312 1.729596 0.451805
e -1.029418 1.920933 1.289485
f 1.217967 1.368064 0.527406
h 0.667855 0.147989 -1.035978
示例2
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print (df.dropna(axis=1))
输出结果:
Empty DataFrame
Columns: []
Index: [a, b, c, d, e, f, g, h]
Pandas | 17 缺失数据处理的更多相关文章
- Pandas缺失数据处理
Pandas缺失数据处理 Pandas用np.nan代表缺失数据 reindex() 可以修改 索引,会返回一个数据的副本: df1 = df.reindex(index=dates[0:4], co ...
- 第十二节:pandas缺失数据处理
1.isnull():检查是否含有确实数据 2.fillna():填充缺失数据 3.dropna() :删除缺失值 4.replace():替换值
- 数据分析之pandas常见的数据处理(四)
常见聚合方法 方法 说明 count 计数 describe 给出各列的常用统计量 min,max 最大最小值 argmin,argmax 最大最小值的索引位置(整数) idxmin,idxmax 最 ...
- Pandas 拼接操作 数据处理
数据分析 生成器 迭代器 装饰器 (两层传参) 单例模式() ios七层 io多路 数据分析:是把隐藏在一些看似杂乱无章的数据背后的信息提炼出来,总结出所研究对象的内在规律 pandas的拼接操作 p ...
- pandas删除缺失数据(pd.dropna()方法)
1.创建带有缺失值的数据库: import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), ind ...
- Pandas基础用法-数据处理【全】-转
完整资料:[数据挖掘入门介绍] (https://github.com/YouChouNoBB/data-mining-introduction) # coding=utf-8 # @author: ...
- 05-pandas索引切片读取数据缺失数据处理
引入 numpy已经能够帮助我们处理数据,能够结合matplotlib解决我们数据分析的问题,那么pandas学习的目的在什么地方呢? numpy能够帮我们处理处理数值型数据,但是这还不够 很多时候, ...
- Pandas和常见数据处理小模块
文章目录 前言 Pandas部分 根据某一列找另一列 根据条件变换每一列 按照标签保存为DataFrame 数据处理 切分数据集和测试集 其他 计时 前言 pandas 确实很好用, 但是网上的教程参 ...
- python pandas模块,nba数据处理(1)
pandas提供了使我们能够快速便捷地处理结构化数据的大量数据结构和函数.pandas兼具Numpy高性能的数组计算功能以及电子表格和关系型数据(如SQL)灵活的数据处理能力.它提供了复杂精细的索引功 ...
随机推荐
- springboot系列之03-使用IDEA完成第一个示例程序
未经允许,不得转载 原作者:字母哥博客 本文完整系列出自:springboot深入浅出系列 一.使用IntellijIDEA建立第一个spring boot 项目 通常只有专业版付费版才默认带有Spr ...
- 【SQL server基础】判断数据库、表格、视图、存储过程、函数书否存在
库是否存在 if exists(select * from master..sysdatabases where name=N'库名') print 'exists' else print 'not ...
- ES 32 - Elasticsearch 数据建模的探索与实践
目录 1 什么是数据建模? 2 如何对 ES 中的数据进行建模 2.1 字段类型的建模方案 2.2 检索.聚合及排序的建模方案 2.3 额外存储的建模方案 3 ES 数据建模实例演示 3.1 动态创建 ...
- linux 更改文件所属用户及用户组
在Linux中,创建一个文件时,该文件的拥有者都是创建该文件的用户.该文件用户可以修改该文件的拥有者及用户组,当然root用户可以修改任何文件的拥有者及用户组.在Linux中,对于文件的权限(rw ...
- Java 学习笔记之 Sleep停止线程
Sleep停止线程: 在Sleep状态下被interrupt,interrupted 状态会被擦除,返回false. 线程在Sleep状态下被interrupt: public class Sleep ...
- charles抓包小程序
charles抓包小程序: 原理呢,简单理解,通过charles开代理,然后手工wifi设置代理上网. 但是要做一些准备:手机要安装charles 证书. 注意的是安卓和ios有区别:目前安卓7.0版 ...
- sql中的 where 、group by 和 having 用法解析
--sql中的 where .group by 和 having 用法解析 --如果要用到group by 一般用到的就是“每这个字” 例如说明现在有一个这样的表:每个部门有多少人 就要用到分组的技术 ...
- 报错com.neenbedankt.android-apt not found如何解决
apply plugin: 'com.neenbedankt.android-apt' 在moudle中build.gradle文件内有应用此插件,编译时报错 检查Project中build.grad ...
- 虚拟机安装Centos7系统后优化操作
重点说明 以下操作针对于VMware软件上新创建的Centos7的虚拟机的优化,当需要多台虚拟机的实验环境时,可通过以下需求先操作配置出一台优化机(也可称为模板机),并创建快照记录,以后的多台虚拟机环 ...
- 旧瓶新酒-获取网络资源即爬取下载页面内容(图片、html、css、js等)
这个java获取网络资源以前也写过不少 最近用到又重新写了一个,apache.commons.io中的例子就非常好,但是无法对请求进行详细设置 于是大部分照搬,局部替换以设置请求头 如需更加复杂的设置 ...