World Exhibition

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2162    Accepted Submission(s): 1063

Problem Description
Nowadays, many people want to go to Shanghai to visit the World Exhibition. So there are always a lot of people who are standing along a straight line waiting for entering. Assume that there are N (2 <= N <= 1,000) people numbered 1..N who are standing in the same order as they are numbered. It is possible that two or more person line up at exactly the same location in the condition that those visit it in a group.

There is something interesting. Some like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of X (1 <= X <= 10,000) constraints describes which person like each other and the maximum distance by which they may be separated; a subsequent list of Y constraints (1 <= Y <= 10,000) tells which person dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between person 1 and person N that satisfies the distance constraints.

 
Input
First line: An integer T represents the case of test.

The next line: Three space-separated integers: N, X, and Y.

The next X lines: Each line contains three space-separated positive integers: A, B, and C, with 1 <= A < B <= N. Person A and B must be at most C (1 <= C <= 1,000,000) apart.

The next Y lines: Each line contains three space-separated positive integers: A, B, and C, with 1 <= A < B <= C. Person A and B must be at least C (1 <= C <= 1,000,000) apart.

 
Output
For each line: A single integer. If no line-up is possible, output -1. If person 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between person 1 and N.
 
Sample Input
1
4 2 1
1 3 8
2 4 15
2 3 4
 
Sample Output
19
 
Author
alpc20
 
Source
 
Recommend
zhouzeyong   |   We have carefully selected several similar problems for you:  1534 1529 3666 3440 1531 
 
分析:
负环的定义:
有向图中存在一个环,其权值和为负数
这题跟poj3169一模一样
解析:
 
code:
#include<stdio.h>
#include<iostream>
#include<math.h>
#include<string.h>
#include<set>
#include<map>
#include<list>
#include<math.h>
#include<queue>
#include<algorithm>
using namespace std;
typedef long long LL;
#define INF 9999999999
#define me(a,x) memset(a,x,sizeof(a))
int mon1[]= {,,,,,,,,,,,,};
int mon2[]= {,,,,,,,,,,,,};
int dir[][]= {{,},{,-},{,},{-,}}; int getval()
{
int ret();
char c;
while((c=getchar())==' '||c=='\n'||c=='\r');
ret=c-'';
while((c=getchar())!=' '&&c!='\n'&&c!='\r')
ret=ret*+c-'';
return ret;
}
void out(int a)
{
if(a>)
out(a/);
putchar(a%+'');
} #define max_v 1005
struct node
{
int v;
LL w;
node(int vv=,LL ww=):v(vv),w(ww) {}
};
LL dis[max_v];
int vis[max_v];
int cnt[max_v];
vector<node> G[max_v];
queue<int> q; void init()
{
for(int i=; i<max_v; i++)
{
G[i].clear();
dis[i]=INF;
vis[i]=;
cnt[i]=;
}
while(!q.empty())
q.pop();
} int spfa(int s,int n)
{
vis[s]=;
dis[s]=;
q.push(s);
cnt[s]++; while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=; for(int j=; j<G[u].size(); j++)
{
int v=G[u][j].v;
LL w=G[u][j].w; if(dis[v]>dis[u]+w)
{
dis[v]=dis[u]+w;
if(vis[v]==)
{
q.push(v);
cnt[v]++;
vis[v]=; if(cnt[v]>n)
return ;
}
}
}
}
return ;
}
int f(int u,int v)
{
for(int j=; j<G[u].size(); j++)
{
if(G[u][j].v==v)
return ;
}
return ;
}
int main()
{
int n,a,b;
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d %d %d",&n,&a,&b);
init();
int x,y,w;
while(a--)
{
scanf("%d %d %d",&x,&y,&w);
if(f(x,y))
G[x].push_back(node(y,w));
}
while(b--)
{
scanf("%d %d %d",&x,&y,&w);
if(f(y,x))
G[y].push_back(node(x,-w));
}
int flag=spfa(,n);
if(flag==)
{
printf("-1\n");
}
else if(dis[n]<INF)
{
printf("%lld\n",dis[n]);
}
else
{
printf("-2\n");
}
}
return ;
}
 

HDU 3592 World Exhibition(线性差分约束,spfa跑最短路+判断负环)的更多相关文章

  1. HDU 3592 World Exhibition (差分约束,spfa,水)

    题意: 有n个人在排队,按照前后顺序编号为1~n,现在对其中某两人的距离进行约束,有上限和下限,表示dis[a,b]<=c或者dis[a,b]>=c,问第1个人与第n个人的距离最多可能为多 ...

  2. poj 3169 Layout(线性差分约束,spfa:跑最短路+判断负环)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15349   Accepted: 7379 Descripti ...

  3. BZOJ.4500.矩阵(差分约束 SPFA判负环 / 带权并查集)

    BZOJ 差分约束: 我是谁,差分约束是啥,这是哪 太真实了= = 插个广告:这里有差分约束详解. 记\(r_i\)为第\(i\)行整体加了多少的权值,\(c_i\)为第\(i\)列整体加了多少权值, ...

  4. POJ 1364 / HDU 3666 【差分约束-SPFA】

    POJ 1364 题解:最短路式子:d[v]<=d[u]+w 式子1:sum[a+b+1]−sum[a]>c      —      sum[a]<=sum[a+b+1]−c−1  ...

  5. HDU 1384 Intervals【差分约束-SPFA】

    类型:给出一些形如a−b<=k的不等式(或a−b>=k或a−b<k或a−b>k等),问是否有解[是否有负环]或求差的极值[最短/长路径].例子:b−a<=k1,c−b&l ...

  6. 【BZOJ】2330: [SCOI2011]糖果(差分约束+spfa)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2330 差分约束运用了最短路中的三角形不等式,即d[v]<=d[u]+w(u, v),当然,最长 ...

  7. 图论分支-差分约束-SPFA系统

    据说差分约束有很多种,但是我学过的只有SPFA求差分: 我们知道,例如 A-B<=C,那么这就是一个差分约束. 比如说,著名的三角形差分约束,这个大家都是知道的,什么两边之差小于第三边啦,等等等 ...

  8. 【poj3169】【差分约束+spfa】

    题目链接http://poj.org/problem?id=3169 题目大意: 一些牛按序号排成一条直线. 有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没 ...

  9. O - Layout(差分约束 + spfa)

    O - Layout(差分约束 + spfa) Like everyone else, cows like to stand close to their friends when queuing f ...

随机推荐

  1. POJ3159(KB4-K 差分约束)

    Candies Time Limit: 1500MS   Memory Limit: 131072K Total Submissions: 33283   Accepted: 9334 Descrip ...

  2. POJ2227(优先队列)

    The Wedding Juicer Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 3440   Accepted: 155 ...

  3. java中获取系统变量

    System.getProperty("java.version") 用来获取系统变量.getProperty()这个方法是获取指定键指示的系统属性的.以下是通过System.ge ...

  4. 【js实例】Array类型的9个数组方法,Date类型的41个日期方法,Function类型

    前文提要:[js实例]js中的5种基本数据类型和9种操作符 Array类型的9个数组方法 Array中有9个数组方法: 1.检测数组 2.转换方法 3.栈方法 4.队列方法 5.冲排序方法6.操作方法 ...

  5. postman获取全局

    1.获取token接口时,在test里面输入如下语句 postman.clearGlobalVariable("token"); var jsonData = JSON.parse ...

  6. 敏捷团队的组织与管理--- MPD软件工作坊培训感想(下)

    注:由麦思博(MSUP)主办的2013年亚太软件研发团队管理峰会(以下简称MPD大会)分别于6月15及6月22日在北京.上海举办,葡萄城的部分程序员参加了上海的会议,本文是参会的一些感受和心得. 今年 ...

  7. JSP内置对象——out对象/request对象

    在这个科技高速发展的时代,迫使我们的脚步一刻都不能停下. 在这个for循环语句当中,我们可以直接使用jsp内置对象中的out对象来给浏览器打印输出,那么这个out对象就是一个内置对象, 在这里,我们使 ...

  8. ReactNative仿微信朋友圈App

    摘要: 欢迎各位同学加入: React-Native群:397885169 大前端群:544587175 大神超多,热情无私帮助解决各种问题. 一.前沿||潜心修心,学无止尽.生活如此,coding亦 ...

  9. 留言板0.3_models设计

    1.编写"message.models": class UserMessage(models.Model): name = models.CharField(max_length= ...

  10. Oracle EBS OPM 生产批创建事务处理

    --生产批创建事物处理 --created by jenrry DECLARE p_mmti_rec mtl_transactions_interface%ROWTYPE; p_mmli_tbl gm ...