World Exhibition

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2162    Accepted Submission(s): 1063

Problem Description
Nowadays, many people want to go to Shanghai to visit the World Exhibition. So there are always a lot of people who are standing along a straight line waiting for entering. Assume that there are N (2 <= N <= 1,000) people numbered 1..N who are standing in the same order as they are numbered. It is possible that two or more person line up at exactly the same location in the condition that those visit it in a group.

There is something interesting. Some like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of X (1 <= X <= 10,000) constraints describes which person like each other and the maximum distance by which they may be separated; a subsequent list of Y constraints (1 <= Y <= 10,000) tells which person dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between person 1 and person N that satisfies the distance constraints.

 
Input
First line: An integer T represents the case of test.

The next line: Three space-separated integers: N, X, and Y.

The next X lines: Each line contains three space-separated positive integers: A, B, and C, with 1 <= A < B <= N. Person A and B must be at most C (1 <= C <= 1,000,000) apart.

The next Y lines: Each line contains three space-separated positive integers: A, B, and C, with 1 <= A < B <= C. Person A and B must be at least C (1 <= C <= 1,000,000) apart.

 
Output
For each line: A single integer. If no line-up is possible, output -1. If person 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between person 1 and N.
 
Sample Input
1
4 2 1
1 3 8
2 4 15
2 3 4
 
Sample Output
19
 
Author
alpc20
 
Source
 
Recommend
zhouzeyong   |   We have carefully selected several similar problems for you:  1534 1529 3666 3440 1531 
 
分析:
负环的定义:
有向图中存在一个环,其权值和为负数
这题跟poj3169一模一样
解析:
 
code:
#include<stdio.h>
#include<iostream>
#include<math.h>
#include<string.h>
#include<set>
#include<map>
#include<list>
#include<math.h>
#include<queue>
#include<algorithm>
using namespace std;
typedef long long LL;
#define INF 9999999999
#define me(a,x) memset(a,x,sizeof(a))
int mon1[]= {,,,,,,,,,,,,};
int mon2[]= {,,,,,,,,,,,,};
int dir[][]= {{,},{,-},{,},{-,}}; int getval()
{
int ret();
char c;
while((c=getchar())==' '||c=='\n'||c=='\r');
ret=c-'';
while((c=getchar())!=' '&&c!='\n'&&c!='\r')
ret=ret*+c-'';
return ret;
}
void out(int a)
{
if(a>)
out(a/);
putchar(a%+'');
} #define max_v 1005
struct node
{
int v;
LL w;
node(int vv=,LL ww=):v(vv),w(ww) {}
};
LL dis[max_v];
int vis[max_v];
int cnt[max_v];
vector<node> G[max_v];
queue<int> q; void init()
{
for(int i=; i<max_v; i++)
{
G[i].clear();
dis[i]=INF;
vis[i]=;
cnt[i]=;
}
while(!q.empty())
q.pop();
} int spfa(int s,int n)
{
vis[s]=;
dis[s]=;
q.push(s);
cnt[s]++; while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=; for(int j=; j<G[u].size(); j++)
{
int v=G[u][j].v;
LL w=G[u][j].w; if(dis[v]>dis[u]+w)
{
dis[v]=dis[u]+w;
if(vis[v]==)
{
q.push(v);
cnt[v]++;
vis[v]=; if(cnt[v]>n)
return ;
}
}
}
}
return ;
}
int f(int u,int v)
{
for(int j=; j<G[u].size(); j++)
{
if(G[u][j].v==v)
return ;
}
return ;
}
int main()
{
int n,a,b;
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d %d %d",&n,&a,&b);
init();
int x,y,w;
while(a--)
{
scanf("%d %d %d",&x,&y,&w);
if(f(x,y))
G[x].push_back(node(y,w));
}
while(b--)
{
scanf("%d %d %d",&x,&y,&w);
if(f(y,x))
G[y].push_back(node(x,-w));
}
int flag=spfa(,n);
if(flag==)
{
printf("-1\n");
}
else if(dis[n]<INF)
{
printf("%lld\n",dis[n]);
}
else
{
printf("-2\n");
}
}
return ;
}
 

HDU 3592 World Exhibition(线性差分约束,spfa跑最短路+判断负环)的更多相关文章

  1. HDU 3592 World Exhibition (差分约束,spfa,水)

    题意: 有n个人在排队,按照前后顺序编号为1~n,现在对其中某两人的距离进行约束,有上限和下限,表示dis[a,b]<=c或者dis[a,b]>=c,问第1个人与第n个人的距离最多可能为多 ...

  2. poj 3169 Layout(线性差分约束,spfa:跑最短路+判断负环)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15349   Accepted: 7379 Descripti ...

  3. BZOJ.4500.矩阵(差分约束 SPFA判负环 / 带权并查集)

    BZOJ 差分约束: 我是谁,差分约束是啥,这是哪 太真实了= = 插个广告:这里有差分约束详解. 记\(r_i\)为第\(i\)行整体加了多少的权值,\(c_i\)为第\(i\)列整体加了多少权值, ...

  4. POJ 1364 / HDU 3666 【差分约束-SPFA】

    POJ 1364 题解:最短路式子:d[v]<=d[u]+w 式子1:sum[a+b+1]−sum[a]>c      —      sum[a]<=sum[a+b+1]−c−1  ...

  5. HDU 1384 Intervals【差分约束-SPFA】

    类型:给出一些形如a−b<=k的不等式(或a−b>=k或a−b<k或a−b>k等),问是否有解[是否有负环]或求差的极值[最短/长路径].例子:b−a<=k1,c−b&l ...

  6. 【BZOJ】2330: [SCOI2011]糖果(差分约束+spfa)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2330 差分约束运用了最短路中的三角形不等式,即d[v]<=d[u]+w(u, v),当然,最长 ...

  7. 图论分支-差分约束-SPFA系统

    据说差分约束有很多种,但是我学过的只有SPFA求差分: 我们知道,例如 A-B<=C,那么这就是一个差分约束. 比如说,著名的三角形差分约束,这个大家都是知道的,什么两边之差小于第三边啦,等等等 ...

  8. 【poj3169】【差分约束+spfa】

    题目链接http://poj.org/problem?id=3169 题目大意: 一些牛按序号排成一条直线. 有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没 ...

  9. O - Layout(差分约束 + spfa)

    O - Layout(差分约束 + spfa) Like everyone else, cows like to stand close to their friends when queuing f ...

随机推荐

  1. thinkphp5+qrcode生成二维码

    1.下载二维码插件Phpqrcode,地址 https://sourceforge.net/projects/phpqrcode/files/,把下载的文件夹放到\thinkphp\vendor下 2 ...

  2. 【读书笔记】iOS-网络-同步请求,队列式异步请求,异步请求的区别

    一,同步请求的最佳实践. 1,只在后台过程中使用同步请求,除非确定访问的是本地文件资源,否则请不要在主线程上使用. 2,只有在知道返回的数据不会超出应用的内存时才使用同步请求.记住,整个响应体都会位于 ...

  3. Flex 常用布局

    1.flex布局 1.1  容器指定为flex布局 .box{display: flex;} 1.2 行元素指定flex布局 .box{display:inline-flex} 2.容器的属性 2.1 ...

  4. 纯小白入手 vue3.0 CLI - 2.6 - 组件的复用

    vue3.0 CLI 真小白一步一步入手全教程系列:https://www.cnblogs.com/ndos/category/1295752.html 我的 github 地址 - vue3.0St ...

  5. LeetCode题解之Unique Paths

    1.题目描述 2. 问题分析 使用动态规划求解 3.代码 int uniquePaths(int m, int n) { vector<vector<)); ; i < m; i++ ...

  6. Unix操作系统监控详解(一)

    一.描述 监控在检查系统问题运行状况以及优化系统性能工作上是一个不可缺少的部分.通过操作系统监控工具监视操作系统资源的使用情况,间接地反映了各服务器程序的运行情况.根据运行结果分析可以帮助我们快速定位 ...

  7. Azure 虚拟机代理概述

    Azure 虚拟机代理(AM 代理)是受保护的轻型过程,用于管理 VM 与 Azure 结构控制器的交互. VM 代理有一个主要角色,目的是启用和执行 Azure 虚拟机扩展. VM 扩展可用于对虚拟 ...

  8. 使用 Azure PowerShell 管理 Azure 虚拟网络和 Windows 虚拟机

    Azure 虚拟机使用 Azure 网络进行内部和外部网络通信. 本教程介绍了如何在虚拟网络中创建多个虚拟机 (VM),以及如何在虚拟机之间配置网络连接. 你将学习如何执行以下操作: 创建虚拟网络 创 ...

  9. 针对系统中磁盘IO负载过高的指导性操作

    针对系统中磁盘IO负载过高的指导性操作 主要命令:echo deadline > /sys/block/sda/queue/scheduler 注:以下的内容仅是提供参考,如果磁盘IO确实比较大 ...

  10. Linux load average负载量分析与解决思路

    一.load average top命令中load average显示的是最近1分钟.5分钟和15分钟的系统平均负载.系统平均负载表示 系统平均负载被定义为在特定时间间隔内运行队列中(在CPU上运行或 ...