C. Greedy Arkady
kk people want to split nn candies between them. Each candy should be given to exactly one of them or be thrown away.
The people are numbered from 11 to kk, and Arkady is the first of them. To split the candies, Arkady will choose an integer xx and then give the first xx candies to himself, the next xx candies to the second person, the next xx candies to the third person and so on in a cycle. The leftover (the remainder that is not divisible by xx) will be thrown away.
Arkady can't choose xx greater than MM as it is considered greedy. Also, he can't choose such a small xxthat some person will receive candies more than DD times, as it is considered a slow splitting.
Please find what is the maximum number of candies Arkady can receive by choosing some valid xx.
The only line contains four integers nn, kk, MM and DD (2≤n≤10182≤n≤1018, 2≤k≤n2≤k≤n, 1≤M≤n1≤M≤n, 1≤D≤min(n,1000)1≤D≤min(n,1000), M⋅D⋅k≥nM⋅D⋅k≥n) — the number of candies, the number of people, the maximum number of candies given to a person at once, the maximum number of times a person can receive candies.
Print a single integer — the maximum possible number of candies Arkady can give to himself.
Note that it is always possible to choose some valid xx.
20 4 5 2
8
30 9 4 1
4
In the first example Arkady should choose x=4x=4. He will give 44 candies to himself, 44 candies to the second person, 44 candies to the third person, then 44 candies to the fourth person and then again 44candies to himself. No person is given candies more than 22 times, and Arkady receives 88 candies in total.
Note that if Arkady chooses x=5x=5, he will receive only 55 candies, and if he chooses x=3x=3, he will receive only 3+3=63+3=6 candies as well as the second person, the third and the fourth persons will receive 33candies, and 22 candies will be thrown away. He can't choose x=1x=1 nor x=2x=2 because in these cases he will receive candies more than 22 times.
In the second example Arkady has to choose x=4x=4, because any smaller value leads to him receiving candies more than 11 time.
数学题,d比较小,枚举d
贪心思考,最好应该是第一个人取i次,其他人取i-1次
x*i+x*(i-1)*(k-1)<=n
若x>m 取x=m 然后重新判断是否可以到 i 组
//#include <bits/stdc++.h>
#include<iostream>
#include<stack>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstring>
using namespace std;
typedef long long ll;
#define inf 2147483647
const ll INF = 0x3f3f3f3f3f3f3f3fll;
#define ri register int
template <class T> inline T min(T a, T b, T c)
{
return min(min(a, b), c);
}
template <class T> inline T max(T a, T b, T c)
{
return max(max(a, b), c);
}
template <class T> inline T min(T a, T b, T c, T d)
{
return min(min(a, b), min(c, d));
}
template <class T> inline T max(T a, T b, T c, T d)
{
return max(max(a, b), max(c, d));
}
#define scanf1(x) scanf("%d", &x)
#define scanf2(x, y) scanf("%d%d", &x, &y)
#define scanf3(x, y, z) scanf("%d%d%d", &x, &y, &z)
#define scanf4(x, y, z, X) scanf("%d%d%d%d", &x, &y, &z, &X)
#define pi acos(-1)
#define me(x, y) memset(x, y, sizeof(x));
#define For(i, a, b) for (ll i = (a); i <= (b); i++)
#define FFor(i, a, b) for (int i = a; i >= (b); i--)
#define bug printf("***********\n");
#define mp make_pair
#define pb push_back
const int N = ;
const int M=;
// name*******************************
ll n,k,m,d;
ll t;
ll ans=;
// function****************************** //***************************************
int main()
{
// ios::sync_with_stdio(0);
// cin.tie(0);
// freopen("test.txt", "r", stdin);
// freopen("outout.txt","w",stdout);
cin>>n>>k>>m>>d;
For(i,,d)
{
ll x=n/((i-)*k+);
if(!x)break;
if(x>m)x=m;
if(n/(k*x)+((n%(k*x)>=x)?:)!=i)continue;
ans=max(ans,x*i);
}
cout<<ans;
return ;
}
C. Greedy Arkady的更多相关文章
- 「日常训练」Greedy Arkady (CFR476D2C)
不用问为啥完全一致,那个CSDN的也是我的,我搬过来了而已. 题意(Codeforces 965C) $k$人分$n$个糖果,每个糖果至多属于1个人.A某人是第一个拿糖果的.(这点很重要!!) 他$x ...
- cf965c Greedy Arkady
呸,大傻逼题,我更傻逼ref #include <iostream> using namespace std; typedef long long ll; ll n, k, m, d, a ...
- 【Codeforces Round #476 (Div. 2) [Thanks, Telegram!] C】Greedy Arkady
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 枚举那个人收到了几次糖i. 最好的情况显然是其他人都只收到i-1次糖. 然后这个人刚好多收了一次糖 也即 (i-1)kx + x & ...
- Codeforces Round #476 (Div. 2) [Thanks, Telegram!] ABCDE
修仙场,没脑子,C边界判错一直在写mdzz..D根本没怎么想. 第二天起来想了想D这不是水题吗立马A了.看了看E一开始想分配问题后来发觉想岔了,只需要每次都把树最后分配的点移到最前面就好了. A. P ...
- USACO . Greedy Gift Givers
Greedy Gift Givers A group of NP (2 ≤ NP ≤ 10) uniquely named friends has decided to exchange gifts ...
- hdu4976 A simple greedy problem. (贪心+DP)
http://acm.hdu.edu.cn/showproblem.php?pid=4976 2014 Multi-University Training Contest 10 1006 A simp ...
- ACM Greedy Mouse
Greedy Mouse 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 A fat mouse prepared M pounds of cat food,read ...
- hdu 1053 (huffman coding, greedy algorithm, std::partition, std::priority_queue ) 分类: hdoj 2015-06-18 19:11 22人阅读 评论(0) 收藏
huffman coding, greedy algorithm. std::priority_queue, std::partition, when i use the three commente ...
- Greedy
在现实世界中,有这样一类问题:它有n个输入,而它的解就由这n个输入的某个子集组成,不过这个子集必须满足某些事先给定的条件.把那些必须满足的条件称为约束条件:而把满足约束条件的子集称为该问题的可行解.问 ...
随机推荐
- npm包管理工具在一般项目中的应用方法
最近自己在有时间,在通学一些知识点,记录一下,以便以后使用方面 当我们在做项目的时候,如果需要到包管理工具,那么我们一定会经历以下流程: 1.首先在官网下载node.js,然后默认安装到C盘 检查是否 ...
- BZOJ2707: [SDOI2012]走迷宫(期望 tarjan 高斯消元)
题意 题目链接 Sol 设\(f[i]\)表示从\(i\)走到\(T\)的期望步数 显然有\(f[x] = \sum_{y} \frac{f[y]}{deg[x]} + 1\) 证明可以用全期望公式. ...
- css3的calc()属性
1.calc()是css3的一个新增的功能,用来指定元素的长度,你可以使用calc()给元素的border.margin.pading.font-size和width等属性动态的设置值. 2.calc ...
- PHP编译安装时常见错误解决办法,php编译常见错误
PHP编译安装时常见错误解决办法,php编译常见错误 1.configure: error: xslt-config not found. Please reinstall the libxslt & ...
- Application_Start 多次启动问题
最近在重构一个项目,在重构过程中出现了Application_Start 多次启动的问题,查询资料说是应用程序池内的修改会导致这个问题,后来发现确实如此 因为在重构过程中,我将数据库文件(sqlite ...
- eclipse中如何使用struts2
简介 这篇文章主要讲如何在eclipse中使用struts2,文章使用的struts2的版本是2.5.2,会与其他的版本有一小点的差别,文章里已经说明.例子的完整源码在文末,亲测没有任何错误. str ...
- Python+Selenium笔记(十八):持续集成jenkins
(一)安装xmlrunner 使用Jenkins执行测试时,测试代码中会用到这个模块. pip install xmlrunner (二)安装jenkins (1) 下载jekins https: ...
- python 元组编码和解码问题
先看一个例子: (u'agentEnum', True, '200', {u'msg': u'\u6210\u529f', u'code': 1}) 在2.7.15版本中,如果有下面代码: def f ...
- RHEL7系统管理常用工具
RHEL7提供大量系统管理工具,简要记录一下各工具的作用,后续再详细说明用法. 工具 描述 /proc linux的内存镜像目录./proc/sys目录下的文件能被临时修改,从而改变linux内核参数 ...
- Angular 过滤器的简单使用
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...