BZOJ原题链接

洛谷原题链接

可以将\(1\)和\(0\)的个数和看成是\(x\)轴坐标,个数差看成\(y\)轴坐标。

向右上角走,即\(x\)轴坐标\(+1\),\(y\)轴坐标\(+1\),表示这一位为\(1\)。

向右下角走,即\(x\)轴坐标\(+1\),\(y\)轴坐标\(-1\),表示这一位为\(1\)。



若不考虑题目中的限制,那么这就相当于从\((0, 0)\)出发,走\(n + m\)步到达\((n + m, n - m)\)。

相当于从\(n + m\)步中选出\(n\)步向右上走,所以方案数为\(C_{n + m} ^ n\)。

然后考虑有限制的情况,题目要求在任意的前\(k\)个字符中,\(1\)的个数不能少于\(0\)的个数,在坐标轴上的意义就是不能走到\(y = -1\)这一条线。

于是我们考虑计算出违规情况的方案数,可以将走到\(y = -1\)这条线之前的路线翻折过来。



由于翻折过来会导致向右上走变成向右下走,向右下走变成向右上走,即\(1\)变成\(0\),\(0\)变成\(1\),所以违规情况就相当于有\(n + 1\)个\(1\),\(m - 1\)个\(0\)组成字符串的数量,方案数为\(C_{n + m} ^ {n + 1}\)。

所以最后的答案就是\(C_{n + m} ^ n - C_{n + m} ^ {n + 1}\),略化简下就是\(\dfrac{(n - m + 1) \times \prod\limits_{i = m + 1} ^ {n + m} i }{(n + 1)!}\)。

求出\((n + 1)!\)的逆元,然后直接全部乘再一起即可,逆元可用费马小定理求。

#include<cstdio>
using namespace std;
const int N = 1e6 + 10;
const int mod = 20100403;
inline int re()
{
int x = 0;
char c = getchar();
bool p = 0;
for (; c < '0' || c > '9'; c = getchar())
p |= c == '-';
for (; c >= '0' && c <= '9'; c = getchar())
x = x * 10 + c - '0';
return p ? -x : x;
}
int ksm(int x, int y)
{
int s = 1;
for (; y; y >>= 1, x = 1LL * x * x % mod)
if (y & 1)
s = 1LL * s * x % mod;
return s;
}
int main()
{
int i, n, m, s = 1, dv = 1;
n = re();
m = re();
for (i = 2; i <= n + 1; i++)
dv = 1LL * dv * i % mod;
for (i = m + 1; i <= m + n; i++)
s = 1LL * s * i % mod;
printf("%lld", 1LL * s * (n - m + 1) % mod * ksm(dv, mod - 2) % mod);
return 0;
}

BZOJ1856或洛谷1641 [SCOI2010]生成字符串的更多相关文章

  1. 洛谷 1641 [SCOI2010]生成字符串

    题目戳这里 一句话题意 求\(C_{m+n}^{m}\)-\(C_{m+n}^{m-1}\) Solution 巨说这个题目很水 标签居然还有字符串? 但是我还不很会用逆元真的太菜了,还好此题模数P为 ...

  2. 卡特兰数 洛谷P1641 [SCOI2010]生成字符串

    卡特兰数 参考博客 介绍 卡特兰数为组合数学中的一种特殊数列,用于解决一类特殊问题 设\(f(n)\)为卡特兰数的第n项 其通项公式为 \[f(n)=\frac{2n\choose n}{n+1} \ ...

  3. 洛谷 P1641 [SCOI2010]生成字符串

    洛谷 这题一看就是卡塔兰数. 因为\(cnt[1] \leq cnt[0]\),很显然的卡塔兰嘛! 平时我们推导卡塔兰是用一个边长为n的正方形推的, 相当于从(0,0)点走到(n,n)点,向上走的步数 ...

  4. Luogu 1641[SCOI2010]生成字符串 - 卡特兰数

    Description 有$N$ 个 $1$ 和 $M$ 个 $0$ 组成的字符串, 满足前 $k$ 个字符中 $1$ 的个数不少于 $0$ 的个数. 求这样字符串的个数. $1<=M < ...

  5. Luogu 1641 [SCOI2010]生成字符串

    结果和dp没有一点关系…… 30分算法:设$f_{i, j}$表示已经选了$i$个并且有$j$个是白色的状态数,转移显然,最后答案就是$f_{n + m, m}$,时间复杂度$O(n^{2})$. 1 ...

  6. [SCOI2010]生成字符串 题解(卡特兰数的扩展)

    [SCOI2010]生成字符串 Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数 ...

  7. P1641 [SCOI2010]生成字符串

    P1641 [SCOI2010]生成字符串 题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不 ...

  8. 【解题报告】洛谷 P2571 [SCOI2010]传送带

    [解题报告]洛谷 P2571 [SCOI2010]传送带今天无聊,很久没有做过题目了,但是又不想做什么太难的题目,所以就用洛谷随机跳题,跳到了一道题目,感觉好像不是太难. [CSDN链接](https ...

  9. BZOJ1856 [SCOI2010]生成字符串 【组合数】

    题目 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足要求 ...

随机推荐

  1. 历届试题 对局匹配-(dp)

    问题描述 小明喜欢在一个围棋网站上找别人在线对弈.这个网站上所有注册用户都有一个积分,代表他的围棋水平. 小明发现网站的自动对局系统在匹配对手时,只会将积分差恰好是K的两名用户匹配在一起.如果两人分差 ...

  2. webpack 中使用 vue-router 注意

    //render 会把el指定的容器中所有的内容都清空把#app也会去掉 都在c(app)其中的app组件中展示 所有router-link router-view要写在app这个组件里面   //A ...

  3. opencv矩阵操作

    1.初始化矩阵: 方式一.逐点赋值式: CvMat* mat = cvCreateMat( 2, 2, CV_64FC1 ); cvZero( mat ); cvmSet( mat, 0, 0, 1 ...

  4. PHP使用UTF8编码读取ACCESS的乱码问题解决方案(转)

    PHP使用UTF8编码读取ACCESS的乱码问题解决方案 http://it.xwstudy.com/readnews.php?id=627 来源:本站编辑 发布日期:2013-05-27 已有 17 ...

  5. JavaScript Validate a Valid Date formatted as "mm/dd/yyyy"

    // Validates that the input string is a valid date formatted as "mm/dd/yyyy" function isVa ...

  6. 两种方法修改pyhton爬虫的报头

    方法一: import urlib.request url = "" headers=("User-Agent","") opener = ...

  7. 以太坊博弈游戏 -- FOMO3D,讽刺人性

    以下资料收录自各个博客,下面给出链接. 总的来说,这是基于以太坊的“菠菜”游戏,大资金盘,亏多盈少,大家看看就好. 官网地址:http://exitscam.me/play 出现 7月16日,当时这个 ...

  8. c#: 模态窗口最小化主窗口

    起源: 产品中,通常有些耗时操作比如视频转换.DVD刻录等,在模态窗口中执行.此时最小化它,主窗体不能跟着最小化,影响操作体验. 如何让主窗体最小化,并且可以还原呢?搜索一番,未找到满意结果,自己动手 ...

  9. MVC 的那点小事

    两年未见 一切从头再来.我猜到了故事的开头,找工作一如我想象的那般艰难,但是结果却比我预期的要好很多. 第一次开始用MVC 框架,比我想象的要简单的多,就像同事跟我说的,这只是个框架. 言归正传,前两 ...

  10. OC 开发规范指南 - 个人见解写的很好

    纽约时报 移动团队 Objective-C 规范指南 这份规范指南概括了纽约时报 iOS 团队的代码约定. 介绍 关于这个编程语言的所有规范,如果这里没有写到,那就在苹果的文档里: • Objecti ...