BZOJ原题链接

洛谷原题链接

可以将\(1\)和\(0\)的个数和看成是\(x\)轴坐标,个数差看成\(y\)轴坐标。

向右上角走,即\(x\)轴坐标\(+1\),\(y\)轴坐标\(+1\),表示这一位为\(1\)。

向右下角走,即\(x\)轴坐标\(+1\),\(y\)轴坐标\(-1\),表示这一位为\(1\)。



若不考虑题目中的限制,那么这就相当于从\((0, 0)\)出发,走\(n + m\)步到达\((n + m, n - m)\)。

相当于从\(n + m\)步中选出\(n\)步向右上走,所以方案数为\(C_{n + m} ^ n\)。

然后考虑有限制的情况,题目要求在任意的前\(k\)个字符中,\(1\)的个数不能少于\(0\)的个数,在坐标轴上的意义就是不能走到\(y = -1\)这一条线。

于是我们考虑计算出违规情况的方案数,可以将走到\(y = -1\)这条线之前的路线翻折过来。



由于翻折过来会导致向右上走变成向右下走,向右下走变成向右上走,即\(1\)变成\(0\),\(0\)变成\(1\),所以违规情况就相当于有\(n + 1\)个\(1\),\(m - 1\)个\(0\)组成字符串的数量,方案数为\(C_{n + m} ^ {n + 1}\)。

所以最后的答案就是\(C_{n + m} ^ n - C_{n + m} ^ {n + 1}\),略化简下就是\(\dfrac{(n - m + 1) \times \prod\limits_{i = m + 1} ^ {n + m} i }{(n + 1)!}\)。

求出\((n + 1)!\)的逆元,然后直接全部乘再一起即可,逆元可用费马小定理求。

#include<cstdio>
using namespace std;
const int N = 1e6 + 10;
const int mod = 20100403;
inline int re()
{
int x = 0;
char c = getchar();
bool p = 0;
for (; c < '0' || c > '9'; c = getchar())
p |= c == '-';
for (; c >= '0' && c <= '9'; c = getchar())
x = x * 10 + c - '0';
return p ? -x : x;
}
int ksm(int x, int y)
{
int s = 1;
for (; y; y >>= 1, x = 1LL * x * x % mod)
if (y & 1)
s = 1LL * s * x % mod;
return s;
}
int main()
{
int i, n, m, s = 1, dv = 1;
n = re();
m = re();
for (i = 2; i <= n + 1; i++)
dv = 1LL * dv * i % mod;
for (i = m + 1; i <= m + n; i++)
s = 1LL * s * i % mod;
printf("%lld", 1LL * s * (n - m + 1) % mod * ksm(dv, mod - 2) % mod);
return 0;
}

BZOJ1856或洛谷1641 [SCOI2010]生成字符串的更多相关文章

  1. 洛谷 1641 [SCOI2010]生成字符串

    题目戳这里 一句话题意 求\(C_{m+n}^{m}\)-\(C_{m+n}^{m-1}\) Solution 巨说这个题目很水 标签居然还有字符串? 但是我还不很会用逆元真的太菜了,还好此题模数P为 ...

  2. 卡特兰数 洛谷P1641 [SCOI2010]生成字符串

    卡特兰数 参考博客 介绍 卡特兰数为组合数学中的一种特殊数列,用于解决一类特殊问题 设\(f(n)\)为卡特兰数的第n项 其通项公式为 \[f(n)=\frac{2n\choose n}{n+1} \ ...

  3. 洛谷 P1641 [SCOI2010]生成字符串

    洛谷 这题一看就是卡塔兰数. 因为\(cnt[1] \leq cnt[0]\),很显然的卡塔兰嘛! 平时我们推导卡塔兰是用一个边长为n的正方形推的, 相当于从(0,0)点走到(n,n)点,向上走的步数 ...

  4. Luogu 1641[SCOI2010]生成字符串 - 卡特兰数

    Description 有$N$ 个 $1$ 和 $M$ 个 $0$ 组成的字符串, 满足前 $k$ 个字符中 $1$ 的个数不少于 $0$ 的个数. 求这样字符串的个数. $1<=M < ...

  5. Luogu 1641 [SCOI2010]生成字符串

    结果和dp没有一点关系…… 30分算法:设$f_{i, j}$表示已经选了$i$个并且有$j$个是白色的状态数,转移显然,最后答案就是$f_{n + m, m}$,时间复杂度$O(n^{2})$. 1 ...

  6. [SCOI2010]生成字符串 题解(卡特兰数的扩展)

    [SCOI2010]生成字符串 Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数 ...

  7. P1641 [SCOI2010]生成字符串

    P1641 [SCOI2010]生成字符串 题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不 ...

  8. 【解题报告】洛谷 P2571 [SCOI2010]传送带

    [解题报告]洛谷 P2571 [SCOI2010]传送带今天无聊,很久没有做过题目了,但是又不想做什么太难的题目,所以就用洛谷随机跳题,跳到了一道题目,感觉好像不是太难. [CSDN链接](https ...

  9. BZOJ1856 [SCOI2010]生成字符串 【组合数】

    题目 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足要求 ...

随机推荐

  1. MATLAB总结二

    1.如何将一个多项式中的系数按照幂次提取出来? sym2poly(ans) %ans为一个多项式. 2.在写第二份模式识别的大作业时遇到如下困难: 每个样本贡献给总概率的是一个关于x的表达式,我将所有 ...

  2. MD5 算法

    MD5 Message Digest Algorithm MD5(中文名为消息摘要算法第 五版)为计算机安全领域广泛使用的一种散列函数,用以提供消息的完整性保护.该算法的文件号为RFC 1321(R. ...

  3. 2018面向对象程序设计(Java)第1周学习指导及要求

    2018面向对象程序设计(Java) 第1周学习指导及要求(2018.8.24-2018.9.2)   学习目标 了解课程上课方式及老师教学要求,掌握课程学习必要的软件工具: 简单了解Java特点及历 ...

  4. SAP 自定义进度条

    *&---------------------------------------------------------------------* *& Report ZCHENH028 ...

  5. 大型运输行业实战_day11_2_事务理论与实际生产配置事务管理

    1.什么是事务(Transaction:tx) 数据库的某些需要分步完成,看做是一个整体(独立的工作单元),不能分割,要么整体成功,要么整体生效.“一荣俱荣,一损俱损”,最能体现事务的思想.案例:银行 ...

  6. Python图片识别找坐标(appium通过识别图片点击坐标)

    ***如果只想了解图片相似度识别,直接看第一步即可 ***如果想了解appium根据图片识别点击坐标,需要看第一.二.三步   背景|在做UI测试时,发现iOS自定义的UI控件,appium识别不到. ...

  7. LibreOJ 6277. 数列分块入门 1

    题目链接:https://loj.ac/problem/6277 参考博客:https://www.cnblogs.com/stxy-ferryman/p/8547731.html 两个操作,区间增加 ...

  8. View 常用方法

    id layout_width layout_height layout_margin.layout_marginTop minWidth minHeight background layout_gr ...

  9. Codeforces Beta Round #31 (Div. 2, Codeforces format)

    Codeforces Beta Round #31 (Div. 2, Codeforces format) http://codeforces.com/contest/31 A #include< ...

  10. vcenter或workstation12导入ovf出错:硬件系列vmx 14不受支持

    原因是因为导出ovf的虚拟机版本太高. 两个方法,一个强制,一个推荐. 强制 1. 打开ovf后缀文件,把<vssd:VirtualSystemType>vmx-14</vssd:V ...