Description

Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.

* Walking: FJ can move from any point X to the points - 1 or + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.

If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?

Input

Line 1: Two space-separated integers: N and K

Output

Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.

Sample Input

5 17

Sample Output

4

Hint

The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.

 题意:FJ要抓奶牛,输入n(FJ的位置),k(奶牛的位置),求FJ抓到奶牛所需最少时间。

 FJ有三种走法:

    1:向前移动一步,花费一分钟

    2:向后退后一步,花费一分钟

     3:向前移动当前位置的2倍,花费一分钟

 #include <iostream>
#include <cstring>
#include <queue>
using namespace std;
const int MAX=;
bool vis[MAX];
int step[MAX];
queue <int >q;
int bfs(int n,int k)
{
int head,next;
q.push(n);
step[n]=;
vis[n]=true;
while(!q.empty())
{
head=q.front(); //取队首
q.pop();
for(int i=; i<; i++)
{
if(i==)
next=head-;
if(i==)
next=head+;
if(i==)
next=head*;
if(next<||next>=MAX) //排除出界情况
continue;
if(!vis[next])
{
q.push(next); //入队
step[next]=step[head]+;//步数加一
vis[next]=true; //标记访问
}
if(next==k)
return step[next];
} }
}
int main()
{
int n,k;
while(cin>>n>>k)
{
memset(vis,false,sizeof(vis));
memset(step,,sizeof(step));
while(!q.empty())
q.pop();
if(n>=k)
cout<<n-k<<endl;
else
cout<<bfs(n,k)<<endl;
}
return ;
}

poj 3278 Catch That Cow(bfs+队列)的更多相关文章

  1. POJ 3278 Catch That Cow[BFS+队列+剪枝]

    第一篇博客,格式惨不忍睹.首先感谢一下鼓励我写博客的大佬@Titordong其次就是感谢一群大佬激励我不断前行@Chunibyo@Tiancfq因为室友tanty强烈要求出现,附上他的名字. Catc ...

  2. POJ 3278 Catch That Cow(BFS,板子题)

    Catch That Cow Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 88732   Accepted: 27795 ...

  3. poj 3278 Catch That Cow (bfs搜索)

    Catch That Cow Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 46715   Accepted: 14673 ...

  4. poj 3278 catch that cow BFS(基础水)

    Catch That Cow Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 61826   Accepted: 19329 ...

  5. POJ - 3278 Catch That Cow BFS求线性双向最短路径

    Catch That Cow Farmer John has been informed of the location of a fugitive cow and wants to catch he ...

  6. poj 3278 Catch That Cow bfs

    Description Farmer John has been informed of the location of a fugitive cow and wants to catch her i ...

  7. POJ 3278 Catch That Cow bfs 难度:1

    http://poj.org/problem?id=3278 从n出发,向两边转移,为了不使数字无限制扩大,限制在2*k以内, 注意不能限制在k以内,否则就缺少不断使用-1得到的一些结果 #inclu ...

  8. POJ - 3278 Catch That Cow bfs 线性

    #include<stdio.h> #include<string.h> #include<algorithm> #include<queue> usi ...

  9. BFS POJ 3278 Catch That Cow

    题目传送门 /* BFS简单题:考虑x-1,x+1,x*2三种情况,bfs队列练练手 */ #include <cstdio> #include <iostream> #inc ...

随机推荐

  1. 关于MYSQL字符集问题(二)

    1.查看默认字符集(默认情况下,mysql的字符集是latin1(ISO_8859_1) 通常,查看系统的字符集和排序方式的设定可以通过下面的两条命令: mysql> SHOW VARIABLE ...

  2. setTimeout设置为0的意义

    今天再看 Promise 代码时,有个地方用到了setTimeOut函数,但是第2个参数设为0,顿时懵逼了,这是啥意思? function resolve(newValue) { value = ne ...

  3. 理解Linux中的shutdown、poweroff、halt和reboot命令

    原文  http://os.51cto.com/art/201706/541525.htm   在本篇中,我们会向你解释 shutdown.poweroff.halt 以及 reboot 命令.我们会 ...

  4. TotoiseSVN 使用参考文章

    SVN使用教程总结 http://www.cnblogs.com/armyfai/p/3985660.html TotoiseSVN的基本使用方法 http://www.cnblogs.com/xil ...

  5. SD-WAN介绍

    SD-WAN SD-WAN特性 相关技术 Hybrid WAN WAN Optimization WAN edge router MPLS NFV SDN SD-WAN厂商 SD-WAN SD-WAN ...

  6. java.lang.NoClassDefFoundError: org/apache/ibatis/cursor/Cursor

    因为mybatis的版本和mybatis-spring的版本不兼容导致的,解决方法:mybatis的3.4.0及以上版本用mybatis-spring1.3.0及以上版本:mybatis的3.4.0以 ...

  7. Linux 中的文件锁

    参考资料: https://www.ibm.com/developerworks/cn/linux/l-cn-filelock/index.html

  8. match

    //清空数据match (n) detach delete n (一)查询节点1.查询所有节点 //查询数据库中的所有节点 match(n)return n 2.查询带有某个标签的所有节点 //查询数 ...

  9. DataTable表连接

    public static System.Data.DataTable TableJoin(System.Data.DataTable dt, System.Data.DataTable dtDeta ...

  10. NETSHARP的JAVA开发环境配置

    一:JAVA配置 1. netsharp使用java1.8/1.7版本,本文使用1.8版本 2.jdk下载地址:http://www.oracle.com/technetwork/java/javas ...