(NOI2014)(bzoj3669)魔法森林
LCT裸题,不会的可以来这里看看。
步入正题,现将边按a排序,依次加入每一条边,同时维护路径上的最小生成树上的最大边权,如果两点不连通,就直接连通。
如果两点已经连通,就将该边与路径上较小的一条比较,选择小的那一条即可
统计答案时,如果1与n连通就求出路径上最大值与当前的a值相加,取最小的一个。
但边权不好处理,于是我们把X—>Y路径拆成X->Z->Y,将边权放在Z的点权上即可
下面是代码
#include<bits/stdc++.h>
using namespace std;
typedef int sign;
typedef long long ll;
#define For(i,a,b) for(register sign i=(sign)a;i<=(sign)b;++i)
#define Fordown(i,a,b) for(register sign i=(sign)a;i>=(sign)b;--i)
const int N=5e4+5,M=1e5+5;
bool cmax(sign &a,sign b){return (a<b)?a=b,1:0;}
bool cmin(sign &a,sign b){return (a>b)?a=b,1:0;}
template<typename T>T read()
{
T ans=0,f=1;
char ch=getchar();
while(!isdigit(ch)&&ch!='-')ch=getchar();
if(ch=='-')f=-1,ch=getchar();
while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch-'0'),ch=getchar();
return ans*f;
}
void file()
{
#ifndef ONLINE_JUDGE
freopen("LCT.in","r",stdin);
freopen("LCT.out","w",stdout);
#endif
}
int n,m;
int ch[N+M][2],fa[N+M],rev[N+M],edge[N+M],bl[N+M];
struct node
{
int u,v,a,b;
inline void init(){u=v=a=b=0;}
bool operator < (const node &x)const
{return a<x.a;}
}e[M];
inline void push_up(int x)
{
if(e[bl[x]].b>=e[edge[ch[x][0]]].b&&e[bl[x]].b>=e[edge[ch[x][1]]].b)edge[x]=bl[x];
else if(e[edge[ch[x][0]]].b>=e[edge[ch[x][1]]].b)edge[x]=edge[ch[x][0]];
else edge[x]=edge[ch[x][1]];
}
inline void push_down(int x)
{
if(rev[x])
{
rev[ch[x][0]]^=1;
rev[ch[x][1]]^=1;
swap(ch[x][0],ch[x][1]);
rev[x]=0;
}
}
inline bool isroot(int x){return ch[fa[x]][0]!=x&&ch[fa[x]][1]!=x;}
inline bool get(int x){return x==ch[fa[x]][1];}
inline void rotate(int x)
{
int old=fa[x],oldfa=fa[old],o=get(x);
if(!isroot(old))ch[oldfa][get(old)]=x;
fa[x]=oldfa;fa[ch[x][o^1]]=old;fa[old]=x;
ch[old][o]=ch[x][o^1];ch[x][o^1]=old;
push_up(old);push_up(x);
}
const int inf=0x3f3f3f3f;
int l[N+M],ans=inf;
inline void splay(int x)
{
l[0]=0;
int y=x;
while(1)
{
l[++l[0]]=y;
if(isroot(y))break;
y=fa[y];
}
Fordown(i,l[0],1)push_down(l[i]);
while(!isroot(x))
{
if(!isroot(fa[x]))rotate(get(x)^get(fa[x])?x:fa[x]);
rotate(x);
}
}
inline void access(int x)
{
for(register int y=0;x;y=x,x=fa[x])
{
splay(x);ch[x][1]=y;push_up(x);
}
}
inline void makeroot(int x)
{
access(x);splay(x);rev[x]^=1;
}
inline int find(int x)
{
access(x);splay(x);
while(ch[x][0])x=ch[x][0];
return x;
}
inline void cut(int x,int y)
{
makeroot(x);
access(y);splay(y);
if(ch[y][0]==x)ch[y][0]=fa[x]=0;
}
inline void link(int x,int y)
{
makeroot(x);fa[x]=y;
}
inline void deal(int i)
{
int x=e[i].u,y=e[i].v;
if(find(x)^find(y))link(x,i+n),link(i+n,y);
else
{
makeroot(x);
access(y);splay(y);
if(e[edge[y]].b>e[i].b)
{
int t=edge[y];
cut(t+n,e[t].u);
cut(t+n,e[t].v);
link(i+n,e[i].u);
link(i+n,e[i].v);
}
}
}
inline void input()
{
n=read<int>();m=read<int>();
For(i,1,m)
{
e[i].u=read<int>();
e[i].v=read<int>();
e[i].a=read<int>();
e[i].b=read<int>();
}
}
inline int cal()
{
if(find(1)^find(n))return inf;
makeroot(1);
access(n);splay(n);
return e[edge[n]].b;
}
inline void work()
{
sort(e+1,e+m+1);
e[0].init();
For(i,1,m)edge[i+n]=bl[i+n]=i;
For(i,1,m)
{
deal(i);
while(e[i].a==e[i+1].a)++i,deal(i);
cmin(ans,cal()+e[i].a);
}
printf("%d\n",ans==inf?-1:ans);
}
int main()
{
file();
input();
work();
return 0;
}
(NOI2014)(bzoj3669)魔法森林的更多相关文章
- 【BZOJ3669】【Noi2014】魔法森林(Link-Cut Tree)
[BZOJ3669][Noi2014]魔法森林(Link-Cut Tree) 题面 题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n ...
- BZOJ-3669 魔法森林 Link-Cut-Tree
意识到背模版的重要性了,记住了原理和操作,然后手打模版残了..颓我时间...... 3669: [Noi2014]魔法森林 Time Limit: 30 Sec Memory Limit: 512 M ...
- BZOJ 3669 【NOI2014】 魔法森林
Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...
- 【NOI2014】魔法森林
为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为 1…n1…n,边标号为1…m1…m.初始时小E同学在 11 号节点,隐 ...
- [BZOJ3669]魔法森林
Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...
- 【NOI2014】魔法森林 - 动态加边SPFA
题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,…,n,边标号为 1,2,3,…, ...
- 【BZOJ3669】【NOI2014】魔法森林 LCT
题目描述 给你一个\(n\)个点\(m\)条边的图,每条边有两个边权\(a,b\).请你找出从\(1\)到\(n\)一条路径,使得这条路径上边权\(a\)的最大值\(+\)边权\(b\)的最大值最小. ...
- bzoj3669【NOI2014】魔法森林
题面一道最短路好题…… 开始和喻队长讨论了一下,喻队长一眼切:枚举ai的上界MAX,每次把ai小于等于MAX的边加到图里,以bi为边权跑最短路. 但是,这样做是O(ai*m)的,妥妥TLE,于是我们想 ...
- 【BZOJ】【3669】【NOI2014】魔法森林
LCT动态维护MST LCT动态维护MST 我们可以枚举a,然后找从1到n的一条路径使得:这条路径上的b的最大值最小.这个路径肯定在MST上……所以枚举一遍所有的边,动态维护一个关于b值的MST即可. ...
- 3754. 【NOI2014】魔法森林(LCT)
Problem 给定一个\(n\)个结点,\(m\)条边的的无向图,每条边有两个权值\(ai,bi\). 现在从\(1\)出发,要到达\(n\),每次只能沿着\(ai\le A\)且\(bi\le B ...
随机推荐
- html样式表格
<html><body><table border="1"> <tr height="20px"> &l ...
- 【css】文本超出行数以省略号显示
//超出2行省略overflow:hidden;text-overflow:ellipsis;display:-webkit-box;-webkit-box-orient:vertical;-webk ...
- BZOJ3786: 星系探索 Splay+DFS序
题目大意:给你一个树,支持三种操作,子树加,点到根的路径和,改变某一个点的父亲. 分析: 看起来像一个大LCT,但是很显然,LCT做子树加我不太会啊... 那么,考虑更换一个点的父亲这个操作很有意思, ...
- Elasticsearch 简介
1. 背景 Elasticsearch 在公司的使用越来越广,很多同事之前并没有接触过 Elasticsearch,所以,最近在公司准备了一次关于 Elasticsearch 的分享,整理成此文.此文 ...
- How develop BigData Project in Visual Studio
- 20155316 Exp1 PC平台逆向破解(5)M
前绪 实验收获与感想 初步从三个途径了解了什么是缓冲区溢出以及如何简单实现它,对汇编与反汇编有更直观的了解. 什么是漏洞?漏洞有什么危害? 漏洞是指机器体制设计时所没有顾及到的.可以被利用的bug,放 ...
- 20155330 《网络对抗》 Exp8 Web基础
20155330 <网络对抗> Exp8 Web基础 实验问题回答 什么是表单 表单可以收集用户的信息和反馈意见,是网站管理者与浏览者之间沟通的桥梁. 一个表单有三个基本组成部分 表单标签 ...
- 奔跑吧Linux
刚拿到MiZ702,就被他的"外貌"深深的吸引,核心板加底板的形式让她看上去,强大而神秘-- 华丽的外表之下是否有着与之相当的内含呢,我们拿Linux将其检验一番! 板载的TF卡里 ...
- 设计模式 笔记 模版方法模式 Template Method
//---------------------------15/04/28---------------------------- //TemplateMethod 模版方法模式----类行为型模式 ...
- svn commit时报错 File already exists
第一步: 删除当前文件所在文件夹,提交commit 第二步: 新建刚才删除的文件夹,并将先前需要commit的文件放到此文件夹下,再次commit 提交