【poj3415】 Common Substrings
http://poj.org/problem?id=3415 (题目链接)
题意
给定两个字符串 A 和 B,求长度不小于 k 的公共子串的个数(可以相同)。
Solution
后缀数组论文题。。。
基本思路是计算 A 的所有后缀和 B 的所有后缀之间的最长公共前缀的长度,把最长公共前缀长度不小于 k 的部分全部加起来。先将两个字符串连起来,中间用一个没有出现过的字符隔开。按 height 值分组后,接下来的工作便是快速的统计每组中后缀之间的最长公共前缀之和。扫描一遍,每遇到一个 B 的后缀就统计与前面的 A 的后缀能产生多少个长度不小于 k 的公共子串,这里 A 的后缀需要用一个单调的栈来高效的维护。然后对 A 也这样做一次。
如何用单调栈来维护呢?这真的是一个问题。这里我运用的单调栈与一般的单调栈不一样。单调栈里面记录一个结构体,结构体记录每个串对答案的贡献w以及这种串的个数c,自栈底向栈顶w递增。每次扫描到一个height[i]当它小于栈顶时,将栈顶的元素与栈顶第二个元素合并,并且更新栈中元素的总贡献。
细节
数组开两倍。
代码
// poj3693
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf 1<<30
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=500010;
int sa[maxn],rank[maxn],height[maxn];
int n,K;
char s[maxn]; struct data {int w,c;}st[maxn];
namespace Suffix {
int wa[maxn],wb[maxn],ww[maxn];
bool cmp(int *r,int a,int b,int l) {
return r[a]==r[b] && r[a+l]==r[b+l];
}
void da(char *r,int *sa,int n,int m) {
int i,j,p,*x=wa,*y=wb;
for (i=0;i<=m;i++) ww[i]=0;
for (i=1;i<=n;i++) ww[x[i]=r[i]]++;
for (i=1;i<=m;i++) ww[i]+=ww[i-1];
for (i=n;i>=1;i--) sa[ww[x[i]]--]=i;
for (p=0,j=1;p<n;j*=2,m=p) {
for (p=0,i=n-j+1;i<=n;i++) y[++p]=i;
for (i=1;i<=n;i++) if (sa[i]>j) y[++p]=sa[i]-j;
for (i=0;i<=m;i++) ww[i]=0;
for (i=1;i<=n;i++) ww[x[y[i]]]++;
for (i=1;i<=m;i++) ww[i]+=ww[i-1];
for (i=n;i>=1;i--) sa[ww[x[y[i]]]--]=y[i];
for (swap(x,y),p=x[sa[1]]=1,i=2;i<=n;i++)
x[sa[i]]=cmp(y,sa[i-1],sa[i],j) ? p : ++p;
}
}
void calheight(char *r,int *sa,int n) {
for (int i=1;i<=n;i++) rank[sa[i]]=i;
for (int k=0,i=1;i<=n;i++) {
if (k) k--;
int j=sa[rank[i]-1];
while (r[i+k]==r[j+k]) k++;
height[rank[i]]=k;
}
}
} int main() {
while (scanf("%d",&K)!=EOF && K) {
scanf("%s",s+1);
int n=strlen(s+1);
s[++n]='#';
int l=n;
scanf("%s",s+n+1);
n=strlen(s+1);
Suffix::da(s,sa,n,300);
Suffix::calheight(s,sa,n);
int top=0;LL ans=0,S=0;
height[n+1]=inf;
for (int i=1;i<=n+1;i++) {
if (sa[i]>l && i!=n+1) ans+=S;
if (height[i+1]>=K) {
while (top>1 && st[top-1].w>height[i+1]-K+1) {
st[top-1].c+=st[top].c;
S-=(st[top].w-st[top-1].w)*st[top].c;
st[top--]=(data){0,0};
}
if (st[top].w>height[i+1]-K+1) {
if (st[top-1].w==height[i+1]-K+1) {
st[top-1].c+=st[top].c;
S-=(st[top].w-st[top-1].w)*st[top].c;
st[top--]=(data){0,0};
}
else {S-=(st[top].w-(height[i+1]-K+1))*st[top].c;st[top].w=height[i+1]-K+1;}
}
if (sa[i]<l) {
if (st[top].w==height[i+1]-K+1) st[top].c++;
else st[++top]=(data){height[i+1]-K+1,1};
S+=height[i+1]-K+1;
}
}
else {while (top) st[top--]=(data){0,0};S=0;}
}
for (int i=1;i<=n+1;i++) {
if (sa[i]<l && i!=n+1) ans+=S;
if (height[i+1]>=K) {
while (top>1 && st[top-1].w>height[i+1]-K+1) {
st[top-1].c+=st[top].c;
S-=(st[top].w-st[top-1].w)*st[top].c;
st[top--]=(data){0,0};
}
if (st[top].w>height[i+1]-K+1) {
if (st[top-1].w==height[i+1]-K+1) {
st[top-1].c+=st[top].c;
S-=(st[top].w-st[top-1].w)*st[top].c;
st[top--]=(data){0,0};
}
else {S-=(st[top].w-(height[i+1]-K+1))*st[top].c;st[top].w=height[i+1]-K+1;}
}
if (sa[i]>l) {
if (st[top].w==height[i+1]-K+1) st[top].c++;
else st[++top]=(data){height[i+1]-K+1,1};
S+=height[i+1]-K+1;
}
}
else {while (top) st[top--]=(data){0,0};S=0;}
}
printf("%lld\n",ans);
}
return 0;
}
【poj3415】 Common Substrings的更多相关文章
- 【POJ3415】 Common Substrings(后缀数组|SAM)
Common Substrings Description A substring of a string T is defined as: T(i, k)=TiTi+1...Ti+k-1, 1≤i≤ ...
- 【POJ3415】Common Substrings(后缀数组,单调栈)
题意: n<=1e5 思路: 我的做法和题解有些不同 题解是维护A的单调栈算B的贡献,反过来再做一次 我是去掉起始位置不同这个限制条件先算总方案数,再把两个串内部不合法的方案数减去 式子展开之后 ...
- 【POJ3415】 Common Substrings (SA+单调栈)
这道是求长度不小于 k 的公共子串的个数...很不幸,我又TLE了... 解法参考论文以及下面的链接 http://www.cnblogs.com/vongang/archive/2012/11/20 ...
- 【SPOJ】Distinct Substrings(后缀自动机)
[SPOJ]Distinct Substrings(后缀自动机) 题面 Vjudge 题意:求一个串的不同子串的数量 题解 对于这个串构建后缀自动机之后 我们知道每个串出现的次数就是\(right/e ...
- 【SPOJ】Distinct Substrings/New Distinct Substrings(后缀数组)
[SPOJ]Distinct Substrings/New Distinct Substrings(后缀数组) 题面 Vjudge1 Vjudge2 题解 要求的是串的不同的子串个数 两道一模一样的题 ...
- 【CF316G3】Good Substrings 后缀自动机
[CF316G3]Good Substrings 题意:给出n个限制(p,l,r),我们称一个字符串满足一个限制当且仅当这个字符串在p中的出现次数在[l,r]之间.现在想问你S的所有本质不同的子串中, ...
- 【Aizu2292】Common Palindromes(回文树)
[Aizu2292]Common Palindromes(回文树) 题面 Vjudge 神TMD日语 翻译: 给定两个字符串\(S,T\),询问\((i,j,k,l)\)这样的四元组个数 满足\(S[ ...
- 【SPOJ】Distinct Substrings
[SPOJ]Distinct Substrings 求不同子串数量 统计每个点有效的字符串数量(第一次出现的) \(\sum\limits_{now=1}^{nod}now.longest-paren ...
- 【POJ 3415】Common Substrings
[链接]h在这里写链接 [题意] 求两个串的长度大于等于k的公共子串个数. 相同的重复计数. [题解] 先把两个字符串用一个分隔符分开.最好比出现的字符都大的一个数字. ...
随机推荐
- 网络对抗第一次实验——PC平台逆向破解(5)M
网络对抗第一次实验--PC平台逆向破解(5)M 实践一 手工修改可执行文件,改变程序执行流程,直接跳转到getShell函数. 操作步骤: 获取实验用文件pwn1,复制,复制出来的文件改名为20155 ...
- 20155233 《网络对抗》 Exp8 Web基础
实验内容 Web前端HTML Web前端javascipt Web后端:MySQL基础:正常安装.启动MySQL,建库.创建用户.修改密码.建表 Web后端:编写PHP网页,连接数据库,进行用户认证 ...
- Vue 项目集合
饿了么安全应急响应中心 饿了么招聘 饿了么前端 · GitHub 稀土掘金 异乡好居 明星垂搜 广州建管 基于Vue.js的数据统计系统(一) 基于Vue.js的数据统计系统(二) 基于Vue.js的 ...
- 德哥的PostgreSQL私房菜 - 史上最屌PG资料合集
德哥的PostgreSQL私房菜 - 史上最屌PG资料合集
- SSIS 剖析数据流之:连接和查找转换
在SSIS的数据流组件中,SSIS引擎使用Merge Join组件和 Lookup组件实现TSQL语句中的inner join 和 outer join 功能,Lookup查找组件的功能更类似TSQL ...
- SpringBoot日记——Docker的使用
跟进互联网的浪潮有时候也挺难的,还没学完就出现新技术了…… 今天来说说,如何使用docker吧~ docker的安装配置 Docker是一个容器,我们怎么理解这个概念.我们做windows系统的时候会 ...
- Python读取ini配置文件封装方法
读取配置文件 ----rw_ini.py from configparser import ConfigParser def read_config(config_file_path:str): &q ...
- Jmeter目录文件讲解
1.bin:核心可执行文件,包含配置 2.windows启动文件:jmeter.bat mac或linux启动文件:jmeter jmeter-server:mac或linux分布式压测启动文件 jm ...
- 使用Fidder从安卓模拟器获取APP内H5游戏网址
大家都知道H5游戏其实是网页,但是有些APP或者微端不显示网址链接.这里给大家介绍介绍一种,利用Fiddler进行抓包,获取APP打开的网址的方法.有人说何必多此一举呢,直接用模拟器玩游戏就好了.的确 ...
- torchvision 批量可视化图片
1.1 简介 计算机视觉中,我们需要观察我们的神经网络输出是否合理.因此就需要进行可视化的操作. orchvision是独立于pytorch的关于图像操作的一些方便工具库. torchvision的详 ...