Hinge损失函数主要用来评估支持向量机算法,但有时也用来评估神经网络算法。下面的示例中是计算两个目标类(-1,1)之间的损失。下面的代码中,使用目标值1,所以预测值离1越近,损失函数值越小:

# Use for predicting binary (-1, 1) classes
# L = max(0, 1 - (pred * actual))
hinge_y_vals = tf.maximum(., . - tf.multiply(target, x_vals))
hinge_y_out = sess.run(hinge_y_vals)

两类交叉函数熵损失函数(Cross-entropy loss)有时也作为逻辑损失函数,比如,当预测两类目标0或者1时,希望度量函数预测值到真实分类值(0或者1)的距离,这个距离经常是0到1之间的实数。

# L = -actual * (log(pred)) - (1-actual)(log(1-pred))
xentropy_y_vals = - tf.multiply(target, tf.log(x_vals)) - tf.multiply((. - target), tf.log(. - x_vals))
xentropy_y_out = sess.run(xentropy_y_vals)

Sigmoid交叉熵损失函数与上一个损失函数非常类似,有一点不同的是,它先把想x_vals值通过sigmoid函数转换,再计算交叉熵损失:

# L = -actual * (log(sigmoid(pred))) - (1-actual)(log(1-sigmoid(pred)))
# or
# L = max(actual, 0) - actual * pred + log(1 + exp(-abs(actual)))
xentropy_sigmoid_y_vals = tf.nn.sigmoid_cross_entropy_with_logits(logits=x_vals, labels=targets)
xentropy_sigmoid_y_out = sess.run(xentropy_sigmoid_y_vals)

加权交叉熵损失函数(Weighted cross entropy loss)是Sigmoid交叉熵损失函数的加权,对正目标加权。

# L = -actual * (log(pred)) * weights - (1-actual)(log(1-pred))
# or
# L = (1 - pred) * actual + (1 + (weights - 1) * pred) * log(1 + exp(-actual))
weight = tf.constant(0.5) #正目标加权 权值为0.5
xentropy_weighted_y_vals = tf.nn.weighted_cross_entropy_with_logits(logits=x_vals,targets=targets, pos_weight=weight)
xentropy_weighted_y_out = sess.run(xentropy_weighted_y_vals)

利用matplotlib绘画出以上的损失函数为:

完整代码:

import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.python.framework import ops
ops.reset_default_graph() # Create graph
sess = tf.Session() x_vals = tf.linspace(-3., 5., 500)
target = tf.constant(1.)
targets = tf.fill([500,], 1.) # Hinge loss
# Use for predicting binary (-1, 1) classes
# L = max(0, 1 - (pred * actual))
hinge_y_vals = tf.maximum(0., 1. - tf.multiply(target, x_vals))
hinge_y_out = sess.run(hinge_y_vals) # Cross entropy loss
# L = -actual * (log(pred)) - (1-actual)(log(1-pred))
xentropy_y_vals = - tf.multiply(target, tf.log(x_vals)) - tf.multiply((1. - target), tf.log(1. - x_vals))
xentropy_y_out = sess.run(xentropy_y_vals) # Sigmoid entropy loss
# L = -actual * (log(sigmoid(pred))) - (1-actual)(log(1-sigmoid(pred)))
# or
# L = max(actual, 0) - actual * pred + log(1 + exp(-abs(actual)))
xentropy_sigmoid_y_vals = tf.nn.sigmoid_cross_entropy_with_logits(logits=x_vals, labels=targets)
xentropy_sigmoid_y_out = sess.run(xentropy_sigmoid_y_vals) # Weighted (softmax) cross entropy loss
# L = -actual * (log(pred)) * weights - (1-actual)(log(1-pred))
# or
# L = (1 - pred) * actual + (1 + (weights - 1) * pred) * log(1 + exp(-actual))
weight = tf.constant(0.5)
xentropy_weighted_y_vals = tf.nn.weighted_cross_entropy_with_logits(logits=x_vals,targets=targets, pos_weight=weight)
xentropy_weighted_y_out = sess.run(xentropy_weighted_y_vals) # Plot the output
x_array = sess.run(x_vals)
plt.plot(x_array, hinge_y_out, 'b-', label='Hinge Loss')
plt.plot(x_array, xentropy_y_out, 'r--', label='Cross Entropy Loss')
plt.plot(x_array, xentropy_sigmoid_y_out, 'k-.', label='Cross Entropy Sigmoid Loss')
plt.plot(x_array, xentropy_weighted_y_out, 'g:', label='Weighted Cross Entropy Loss (x0.5)')
plt.ylim(-1.5, 3)
#plt.xlim(-1, 3)
plt.legend(loc='lower right', prop={'size': 11})
plt.show()

Softmax交叉熵损失函数(Softmax cross-entropy loss)是作用于非归一化的输出结果只针对单个目标分类的计算损失。通过softmax函数将输出结果转化成概率分布,然后计算真值概率分布的损失:

# Softmax entropy loss
# L = -actual * (log(softmax(pred))) - (1-actual)(log(1-softmax(pred)))
unscaled_logits = tf.constant([[1., -3., 10.]])
target_dist = tf.constant([[0.1, 0.02, 0.88]])
softmax_xentropy = tf.nn.softmax_cross_entropy_with_logits(logits=unscaled_logits, labels=target_dist)
print(sess.run(softmax_xentropy))

输出:[ 1.16012561]

稀疏Softmax交叉熵损失函数(Sparse Softmax cross-entropy loss)和上一个损失函数类似,它是把目标函数分类为true的转化成index,而Softmax交叉熵损失函数将目标转成概率分布:

# Sparse entropy loss
# L = sum( -actual * log(pred) )
unscaled_logits = tf.constant([[1., -3., 10.]])
sparse_target_dist = tf.constant([2])
sparse_xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=unscaled_logits, labels=sparse_target_dist)
print(sess.run(sparse_xentropy))

输出:[ 0.00012564]

两类交叉熵损失函数有时也作为逻辑损失函数。

tensorflow进阶篇-4(损失函数2)的更多相关文章

  1. tensorflow进阶篇-4(损失函数1)

    L2正则损失函数(即欧拉损失函数),L2正则损失函数是预测值与目标函数差值的平方和.L2正则损失函数是非常有用的损失函数,因为它在目标值附近有更好的曲度,并且离目标越近收敛越慢: # L = (pre ...

  2. tensorflow进阶篇-4(损失函数3)

    Softmax交叉熵损失函数(Softmax cross-entropy loss)是作用于非归一化的输出结果只针对单个目标分类的计算损失.通过softmax函数将输出结果转化成概率分布,然后计算真值 ...

  3. tensorflow进阶篇-5(反向传播2)

    上面是一个简单的回归算法,下面是一个简单的二分值分类算法.从两个正态分布(N(-1,1)和N(3,1))生成100个数.所有从正态分布N(-1,1)生成的数据目标0:从正态分布N(3,1)生成的数据标 ...

  4. tensorflow进阶篇-5(反向传播1)

    这里将讲解tensorflow是如何通过计算图来更新变量和最小化损失函数来反向传播误差的:这步将通过声明优化函数来实现.一旦声明好优化函数,tensorflow将通过它在所有的计算图中解决反向传播的项 ...

  5. tensorflow进阶篇-3

    #-*- coding:utf-8 -*- #Tensorflow的嵌入Layer import numpy as np import tensorflow as tf sess=tf.Session ...

  6. Membership三步曲之进阶篇 - 深入剖析Provider Model

    Membership 三步曲之进阶篇 - 深入剖析Provider Model 本文的目标是让每一个人都知道Provider Model 是什么,并且能灵活的在自己的项目中使用它. Membershi ...

  7. idea 插件的使用 进阶篇

    CSDN 2016博客之星评选结果公布    [系列直播]零基础学习微信小程序!      "我的2016"主题征文活动   博客的神秘功能 idea 插件的使用 进阶篇(个人收集 ...

  8. 2. web前端开发分享-css,js进阶篇

    一,css进阶篇: 等css哪些事儿看了两三遍之后,需要对看过的知识综合应用,这时候需要大量的实践经验, 简单的想法:把qq首页全屏另存为jpg然后通过ps工具切图结合css转换成html,有无从下手 ...

  9. windows系统快捷操作の进阶篇

    上次介绍了windows系统上一些自带的常用快捷键,有些确实很方便,也满足了我们的一部分需求.但是我们追求效率的步伐怎会止步于此?这一次我将会进一步介绍windows上提升效率的方法. 一:运行 打开 ...

随机推荐

  1. Mybatis-Plus 实战完整学习笔记(八)------delete测试

    1.根据ID删除一个员工deleteById /** * 删除客户 * * @throws SQLException */ @Test public void deletedMethod() thro ...

  2. 【慕课网实战】Spark Streaming实时流处理项目实战笔记三之铭文升级版

    铭文一级: Flume概述Flume is a distributed, reliable, and available service for efficiently collecting(收集), ...

  3. CentOS 5 上配置 Redmine 和 Git

    现在我们用 Trac + Git 来管理所有的项目,早些时候是由 Trac + Subversion 管理的,和 Git 比较起来 Subversion 简直就是龟速.虽然我们前段时间换成了 Git ...

  4. Scala_对象

    对象 单例对象 Scala并没有提供Java那样的静态方法或静态字段,但是,可以采用 object关键字实现单例对象,具备和Java静态方法同样的功能. 可以看出,单例对象的定义和类的定义很相似,明显 ...

  5. HDU2159_二维完全背包问题

    HDU2159_二维完全背包问题 输入有:经验,忍耐度,怪物种数,限制杀怪数 每一种怪物对应获得的经验值和消耗的耐久值 输出:剩下的最大忍耐度 限制:忍耐度,杀怪个数 在这里把忍耐度看成背包的容量,杀 ...

  6. JVM虚拟机-类加载器子系统

    转自博客:http://www.cnblogs.com/muffe/p/3541189.html   还有一些自己补充的知识点 一.类加载器基本概念 顾名思义,类加载器(class loader)用来 ...

  7. noah

    1.url:controller/method 2.在index.php中设置display_errors:1 能看到错误提示

  8. cxgrid动态多表头

    function TForm15.CreateBand(View: TcxGridDBBandedTableView;  BandCaption, ParentBandCaption: String) ...

  9. ASP.NET Core2利用MassTransit集成RabbitMQ

    在ASP.NET Core上利用MassTransit来集成使用RabbitMQ真的很简单,代码也很简洁.近期因为项目需要,我便在这基础上再次进行了封装,抽成了公共方法,使得使用RabbitMQ的调用 ...

  10. telerik:RadGrid 分组自动展开

    在 MasterTableView 加上 GroupsDefaultExpanded = " true " 即可 自动展开分组下面的子项