http://acm.hdu.edu.cn/showproblem.php?pid=1069

 

 

 Monkey and Banana

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Description

A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food. 

The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height. 

They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked. 

Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks. 

 

Input

The input file will contain one or more test cases. The first line of each test case contains an integer n, 
representing the number of different blocks in the following data set. The maximum value for n is 30. 
Each of the next n lines contains three integers representing the values xi, yi and zi. 
Input is terminated by a value of zero (0) for n. 
 

Output

For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height". 
 

Sample Input

1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
 

Sample Output

Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
 
 

仅仅按面积来排一下序是不够的, 它得到的并不是最优的解 

 

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm> #define N 200
#define INF 0x3f3f3f3f using namespace std; struct node
{
int x, y, z, h, S;
}a[N]; int cmp(node n1, node n2)
{
return n1.S < n2.S;
} int main()
{
int n, iCase=; while(scanf("%d", &n), n)
{
int i, j, x, y, z, k=, sum=; memset(a, , sizeof(a));
for(i=; i<=n; i++)
{
scanf("%d%d%d", &x, &y, &z);
a[k].x = x, a[k].y = y, a[k].z = z, a[k].S = a[k].x * a[k].y;
k++;
swap(x, z);
a[k].x = x, a[k].y = y, a[k].z = z, a[k].S = a[k].x * a[k].y;
k++;
swap(y, z);
a[k].x = x, a[k].y = y, a[k].z = z, a[k].S = a[k].x * a[k].y;
k++;
} sort(a, a+k, cmp); for(i=; i<k; i++) ///最大上升子序列
{
int Max = ;
for(j=; j<i; j++)
{
if(((a[i].x>a[j].x && a[i].y>a[j].y) || (a[i].x>a[j].y && a[i].y>a[j].x)) && a[j].h>Max)
{
Max = a[j].h;
}
}
a[i].h = a[i].z + Max;
} int ans = ;
for(i=; i<k; i++)
ans = max(ans, a[i].h); printf("Case %d: maximum height = %d\n", iCase++, ans);
}
return ;
}

 

(最大上升子序列)Monkey and Banana -- hdu -- 1069的更多相关文章

  1. (动态规划 最长有序子序列)Monkey and Banana --HDU --1069

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=1069 http://acm.hust.edu.cn/vjudge/contest/view.action ...

  2. Monkey and Banana HDU - 1069 有点像背包,又像最长上升序列

    #include<iostream> #include<algorithm> #include<cstring> #include<vector> us ...

  3. Day9 - F - Monkey and Banana HDU - 1069

    一组研究人员正在设计一项实验,以测试猴子的智商.他们将挂香蕉在建筑物的屋顶,同时,提供一些砖块给这些猴子.如果猴子足够聪明,它应当能够通过合理的放置一些砖块建立一个塔,并爬上去吃他们最喜欢的香蕉.   ...

  4. HDU 1069 Monkey and Banana (动态规划、上升子序列最大和)

    Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  5. HDU 1069 Monkey and Banana dp 题解

    HDU 1069 Monkey and Banana 纵有疾风起 题目大意 一堆科学家研究猩猩的智商,给他M种长方体,每种N个.然后,将一个香蕉挂在屋顶,让猩猩通过 叠长方体来够到香蕉. 现在给你M种 ...

  6. HDU 1069 Monkey and Banana(二维偏序LIS的应用)

    ---恢复内容开始--- Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  7. HDU 1069 Monkey and Banana (DP)

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  8. HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径)

    HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径) Description A group of researchers ar ...

  9. HDU 1069 Monkey and Banana(转换成LIS,做法很值得学习)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 Monkey and Banana Time Limit: 2000/1000 MS (Java ...

随机推荐

  1. tkinter模块

    Python GUI编程(Tkinter) Python 提供了多个图形开发界面的库,几个常用 Python GUI 库如下: Tkinter: Tkinter 模块(Tk 接口)是 Python 的 ...

  2. python使用sqlite

    摘自python帮助文档 一.基本用法 import sqlite3 conn = sqlite3.connect('example.db')#conn = sqlite3.connect(':mem ...

  3. javascript 高级程序设计 十一

    接上一节的创建对象的模式: 原型模式: 对于prototype的理解:我们创建的函数都有一个prototype(原型)属性,这个属性是一个指针指向一个对象,而这个对象的用途是包含基于这个方法的 所有的 ...

  4. BZOJ1912或洛谷3629 [APIO2010]巡逻

    一道树的直径 BZOJ原题链接 洛谷原题链接 显然在原图上路线的总长为\(2(n-1)\). 添加第一条边时,显然会形成一个环,而这条环上的所有边全部只需要走一遍.所以为了使添加的边的贡献最大化,我们 ...

  5. Luogu 4556 雨天的尾巴 - 启发式合并线段树

    Solution 用$col$记录 数量最多的种类, $sum$记录 种类$col$ 的数量. 然后问题就是树上链修改, 求 每个节点 数量最多的种类. 用树上差分 + 线段树合并更新即可. Code ...

  6. Fibonacci Number LT509

    The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence, such th ...

  7. Netsharp下微信菜单以及OAuth

    一.OAuth介绍 在微信开发中,当打开一个页面是,业务场景一般会基于粉丝绑定用户信息,即页面需要基于粉丝和用户的身份处理业务逻辑. 在微信中打开一个页面有三个场景: 1.文本回复中直接包含url 2 ...

  8. java基本例子

    文件结构 D:\jp\jarDemo\IAmMainClass.java import iAmPackage.*; public class IAmMainClass { public static ...

  9. flask在其他文件中添加路由

    应用文件为:app.py from flask import Flask app = Flask(__name__) @app.route("/") def hello(): re ...

  10. Likecloud—吃、吃、吃(P1508)

    题目链接:Likecloud-吃.吃.吃 这题的状态非常的自然. 就是ans[i][j]表示从(i,j)出发,能得到的最大能量值. 那么对应每一个点,我们只要选出他能到达的点的最大值,加上自己就行了. ...