//

//  set map.cpp

//  笔记

//

//  Created by fam on 15/3/23.

//

//

//---------------------------15/03/23----------------------------

//set

{

/*

set概述:

1:所有的元素都会被自动排序,

2:所有的元素只有"键"没有“值”
或者说他们的“值”就是“键”

3:不允许出现两个相同的键值

4:不能通过迭代器改变set的值,因为set的值就是键,

如果可以改变,我们要先删除键,平衡二叉树,再加改变后的键,再平衡

这么做严重破坏了set的组织,iterator也会变得无效,到底是指向之前的位置

还是指向改变后的位置等等。所以stl中不允许改变set的值。

5:set用RB_tree作为底层机制(废话,不然干嘛花大篇幅介绍RB_tree)

*/

//class

template<class Key,
class Compare = less<Key>,

class Alloc = alloc>

class set

{

public:

typedef Key key_type;

typedef Key value_type;

typedef Compare key_compare;

typedef Compare value_compare;

private:

//identity<value_type>
可以根据key值得到value值

typedef rb_tree<key_type, value_type,

identity<value_type>, key_compare, Alloc> rep_type;

rep_type t;

public:

//由于上面说的set不能改变值,所以指针和迭代器引用这些
全都用RB_tree中的const类型的来指定

typedef typename rep_type::const_pointer pointer;

typedef typename rep_type::const_pointer const_pointer;

typedef typename rep_type::const_reference reference;

typedef typename rep_type::const_reference const_reference;

typedef typename rep_type::const_iterator   iterator;

typedef typename rep_type::const_iterator   const_iterator;

typedef typename rep_type::const_reverse_iterator reverse_iterator;

typedef typename rep_type::const_reverse_iterator const_reverse_iterator;

typedef typename rep_type::size_type    size_type;

typedef typename rep_type::difference_type difference_type;

set() : t(Compare()){}

explicit set(const Compare& comp) : t(comp){}

//inset_unique
是不允许相同值出现的插入

template<class InputIterator>

set(InputIterator first, InputIterator last)

: t(Compare()){ t.insert_unique(first, last);}

template<class InputIterator>

set(InputIterator first, InputIterator last,const Compare& comp)

: t(comp){t.insert_unique(first, last);}

set(const set<Key, Compare, Alloc>& x): t(x.t){}

set<Key, Compare, Alloc>&
operator=(const set<Key, Compare, Alloc>& x)

{

t = x.t;

return *this;

}

key_compare key_comp()
const { return t.key_comp();}

//set中的值就是键
所以调用key_comp()

value_compare       value_comp()   
const {return t.key_comp();}

iterator            begin()        
const {return t.begin();}

iterator            end()          
const {return t.end();}

reverse_iterator    rbegin()       
const {return t.rbegin();}

reverse_iterator    rend()         
const {return t.end();}

bool                empty()        
const { return t.empty();}

size_type           size()         
const { return t.size();}

size_type           max_size()     
const { return t.max_size();}

void swap(set<Key, Compare, Alloc>& x) { t.swap(x.t);}

//insert erase

typedef pair<iterator,
bool> pair_interator_bool;

pair<iterator,
bool> inset(const value_type& x)

{

pair<typename rep_type::iterator,
bool> p =t.insert_unique(x);

return pair<iterator,
bool>(p.first, p.second);

}

iterator insert(iterator position,
const value_type& x)

{

typedef typename rep_type::iterator rep_iterator;

return t.insert_unique((rep_iterator&)position, x);

}

template<class InputIterator>

void insert(InputIterator first, InputIterator last)

{

t.insert_unique(first, last);

}

void erase(iterator position)

{

typedef typename rep_type::iterator rep_iterator;

t.erase((rep_iterator&)position);

}

size_type erase(const key_type& x)

{

return t.erase(x);

}

void erase(iterator first, iterator last)

{

typedef typename rep_type::iterator rep_iterator;

t.erase((rep_iterator&)first, (rep_iterator&)last);

}

void clear() { t.clear();}

//

iterator find(const key_type& x)
const { return t.find(x); }

size_type count(const key_type& x)
const { return t.count(x); }

iterator lower_bound(const key_type& x)
const

{

return t.lower_bound(x);

}

iterator upper_bound(const key_type& x)
const

{

return t.upper_bound(x);

}

pair<iterator,iterator> equal_range(const key_type& x)
const

{

return t.equal_range(x);

}

friend bool
operator== __STL_NULL_TMPL_ARGS (const set&,
const set&);

friend bool
operator<  __STL_NULL_TMPL_ARGS (const set&,
const set&);

};

template<class Key,
class Compare, class Alloc>

inline bool
operator==(const set<Key, Compare, Alloc>& x,

const set<Key, Compare, Alloc>& y)

{

return x.t == y.t;

}

template<class Key,
class Compare, class Alloc>

inline bool
operator<(const set<Key, Compare, Alloc>& x,

const set<Key, Compare, Alloc>& y)

{

return x.t < y.t;

}

//
总结

//没什么好总结的,这里只是不断调用底层的东西,没有技术可言

}

//map

{

/*

map概述:

和set不同的就是,多了一个值的概念,每一个键都可以存储一个实值

排序是根据key(键)来排序的。一般都是根据key来取其中的值。

和set一样的原理,我们不能改变键。和set不同的是,可以改变data(实值)

实值只是节点所存储的东西,当然可以改,改了不会影响排序

*/

//struct pair

template<class T1,
class T2>

struct pair

{

typedef T1 first_type;

typedef T2 second_type;

T1 first;

T2 second;

pair() : first(T1()), second(T2()){}

pair(const T1& a,const T2& b) : first(a), second(b){}

};

template<class Key,
class T, class Compare = less<Key>,

class Alloc = alloc>

class map

{

public:

typedef Key key_type;

typedef T data_type;

typedef T mapped_type;

typedef pair<const Key, T> value_type;

typedef Compare key_compare;

typedef Compare value_compare;

class value_compare

:
public binary_function<value_type, value_type,
bool>

{

friend class map<Key, T, Compare, Alloc>;

protected:

Compare comp;

value_compare(Compare c) : comp(c) {}

public:

bool operator()(const value_type& x,
const value_type& y)
const

{

return comp(x.first, y.first);

}

};

private:

typedef rb_tree<key_type, value_type,

select1st<value_type>, key_compare, Alloc> rep_type;

rep_type t;

public:

typedef typename rep_type::pointer pointer;

typedef typename rep_type::const_pointer const_pointer;

typedef typename rep_type::reference reference;

typedef typename rep_type::const_reference const_reference;

typedef typename rep_type::iterator   iterator;

typedef typename rep_type::const_iterator   const_iterator;

typedef typename rep_type::reverse_iterator reverse_iterator;

typedef typename rep_type::const_reverse_iterator const_reverse_iterator;

typedef typename rep_type::size_type    size_type;

typedef typename rep_type::difference_type difference_type;

map() : t(Compare()){}

explicit map(const Compare& comp) : t(comp){}

//inset_unique
是不允许相同值出现的插入

template<class InputIterator>

map(InputIterator first, InputIterator last)

: t(Compare()){ t.insert_unique(first, last);}

template<class InputIterator>

map(InputIterator first, InputIterator last,const Compare& comp)

: t(comp){t.insert_unique(first, last);}

map(const set<Key, Compare, Alloc>& x): t(x.t){}

map<Key, Compare, Alloc>&
operator=(const map<Key, Compare, Alloc>& x)

{

t = x.t;

return *this;

}

key_compare         key_comp()     
const { return t.key_comp();}

value_compare       value_comp()   
const { return t.value_compare(t.key_comp());}

iterator            begin()        
const { return t.begin();}

iterator            end()          
const { return t.end();}

reverse_iterator    rbegin()       
const { return t.rbegin();}

reverse_iterator    rend()         
const { return t.end();}

bool                empty()        
const { return t.empty();}

size_type           size()         
const { return t.size();}

size_type           max_size()     
const { return t.max_size();}

void swap(set<Key, Compare, Alloc>& x) { t.swap(x.t);}

//map可以根据
键 来取
值, 如果不存在就插入一个新的
键值对

T&
operator[] (const key_type& k)

{

return (*((insert(value_type(k,T()))).first)).second;

}

//insert erase

pair<iterator,
bool> inset(const value_type& x)

{

pair<typename rep_type::iterator,
bool> p =t.insert_unique(x);

return pair<iterator,
bool>(p.first, p.second);

}

iterator insert(iterator position,
const value_type& x)

{

typedef typename rep_type::iterator rep_iterator;

return t.insert_unique((rep_iterator&)position, x);

}

template<class InputIterator>

void insert(InputIterator first, InputIterator last)

{

t.insert_unique(first, last);

}

void erase(iterator position)

{

typedef typename rep_type::iterator rep_iterator;

t.erase((rep_iterator&)position);

}

size_type erase(const key_type& x)

{

return t.erase(x);

}

void erase(iterator first, iterator last)

{

typedef typename rep_type::iterator rep_iterator;

t.erase((rep_iterator&)first, (rep_iterator&)last);

}

void clear() { t.clear();}

//

iterator find(const key_type& x)
const { return t.find(x); }

size_type count(const key_type& x)
const { return t.count(x); }

iterator lower_bound(const key_type& x)
const

{

return t.lower_bound(x);

}

iterator upper_bound(const key_type& x)
const

{

return t.upper_bound(x);

}

pair<iterator,iterator> equal_range(const key_type& x)
const

{

return t.equal_range(x);

}

friend bool
operator== __STL_NULL_TMPL_ARGS (const set&,
const set&);

friend bool
operator<  __STL_NULL_TMPL_ARGS (const set&,
const set&);

};

template<class Key,
class Compare, class Alloc>

inline bool
operator==(const set<Key, Compare, Alloc>& x,

const set<Key, Compare, Alloc>& y)

{

return x.t == y.t;

}

template<class Key,
class Compare, class Alloc>

inline bool
operator<(const set<Key, Compare, Alloc>& x,

const set<Key, Compare, Alloc>& y)

{

return x.t < y.t;

}

/*

总结:

map和set不同的是有了data这个概念,并且可以更改这个data值了

set插入时插的就是key, map插入时插的是value(键值对)

插入时,函数会调用keyofvalue仿函数取得value的key

之后排序会根据key_compare(也就是模版参数中的Compare)来比较key的大小

最后都是用key来比较的,不同的是set存的值也是key,map存的值是data。

*/

}

//multiset 和multimap

/*

这两个容器和之前的基本相同,不同的就是把inset_unique改成inset_equel

具体的底层实现在RB_tree
中已经实现了,只要调用就行了

*/

stl源码剖析 详细学习笔记 set map的更多相关文章

  1. stl源码剖析 详细学习笔记 hashtable

    //---------------------------15/03/24---------------------------- //hashtable { /* 概述: sgi采用的是开链法完成h ...

  2. stl源码剖析 详细学习笔记 RB_tree (1)

    // //  RB_tree_STL.cpp //  笔记 // //  Created by fam on 15/3/21. // // #include "RB_tree_STL.h&q ...

  3. stl源码剖析 详细学习笔记heap

    // //  heap.cpp //  笔记 // //  Created by fam on 15/3/15. // // //---------------------------15/03/15 ...

  4. stl源码剖析 详细学习笔记 空间配置器

    //---------------------------15/04/05---------------------------- /* 空间配置器概述: 1:new操作包含两个阶段操作 1>调 ...

  5. stl源码剖析 详细学习笔记 算法(1)

    //---------------------------15/03/27---------------------------- //算法 { /* 质变算法:会改变操作对象之值 所有的stl算法都 ...

  6. stl源码剖析 详细学习笔记 算法总览

    //****************************基本算法***************************** /* stl算法总览,不在stl标准规格的sgi专属算法,都以 *加以标 ...

  7. stl源码剖析 详细学习笔记 RB_tree (2)

    //---------------------------15/03/22---------------------------- //一直好奇KeyOfValue是什么,查了下就是一个和仿函数差不多 ...

  8. stl源码剖析 详细学习笔记priority_queue slist

    // //  priority_queue.cpp //  笔记 // //  Created by fam on 15/3/16. // // //------------------------- ...

  9. stl源码剖析 详细学习笔记stack queue

    // //  stack.cpp //  笔记 // //  Created by fam on 15/3/15. // // //---------------------------15/03/1 ...

随机推荐

  1. python 流程控制(while)

    1,while基本语法 2,while else语句 1,while基本语法 n = 1 while n<10: print n n += 1 2,while else语句 n =10 whil ...

  2. leveldb源码分析--日志

    我们知道在一个数据库系统中为了保证数据的可靠性,我们都会记录对系统的操作日志.日志的功能就是用来在系统down掉的时候对数据进行恢复,所以日志系统对一个要求可靠性的存储系统是极其重要的.接下来我们分析 ...

  3. elasticsearch之JAVA环境变量报错:could not find java; set JAVA_HOME or ensure java is in PATH

    在以RPM包安装elasticsearch过程中出现报错JAVA环境的问题: ● elasticsearch.service - Elasticsearch Loaded: loaded (/usr/ ...

  4. Alpha- 事后诸葛亮(麻瓜制造者)

    目录 预期计划 现实进展 团队体会 成员分工及工作量比例 会议总结 预期计划 在Alpha阶段开始之前,我们的预期计划是:从用户登录,发布商品.发布求购信息的基本功能开始做起.用户登录使用输入教务处的 ...

  5. 【Alpha 冲刺】 11/12

    今日任务总结 人员 今日原定任务 完成情况 遇到问题 贡献值 胡武成 完成app端api编写 未完成 文件上传api还没完成 孙浩楷 1. 与后端交接, 2. 完成图片在线编辑插件引入 未完成 陷入僵 ...

  6. 【干货】一文理解Druid原理架构(时序数据库,不是ali的数据库连接池)

    Druid.io(以下简称Druid)是2013年底开源出来的, 主要解决的是对实时数据以及较近时间的历史数据的多维查询提供高并发(多用户),低延时,高可靠性的问题. Druid简介: Druid是一 ...

  7. 配置好jdk后,cmd编写java -version还是报找不到jdk

    找了好长时间没查出问题在哪,配置的都没有问题,最后搜了搜网上发现,jdk的这两行得在最上面才行.

  8. BZOJ5369:[PKUSC2018]最大前缀和(状压DP)

    Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于是小C决定把序列随机打乱,然后取序列的最大前缀和作为答案. 小C ...

  9. Spark项目之电商用户行为分析大数据平台之(十二)Spark上下文构建及模拟数据生成

    一.模拟生成数据 package com.bw.test; import java.util.ArrayList; import java.util.Arrays; import java.util. ...

  10. Python2.7-matplotlib

    matplotlib的pyplot子库提供了和matlab类似的绘图API,方便用户快速绘制2D图表 一般用以下形式导入:import matplotlib.pyplot as plt 一般用法:1. ...