这是使用拉格朗日插值函数生成的样条曲线。在数值分析中,拉格朗日插值法是以法国十八世纪数学家约瑟夫·拉格朗日命名的一种多项式插值方法。许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解。如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。这样的多项式称为拉格朗日(插值)多项式。数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数。

关于插值与样条的介绍请看:http://www.cnblogs.com/WhyEngine/p/4020294.html

核心代码:

//////////////////////////////////////////////////////////////////////
// 一元全区间等距插值
//////////////////////////////////////////////////////////////////////
static float GetValueLagrange(const void* valuesPtr, int stride, int n, float t)
{
int i,j,k,m;
float z,s,xi,xj;
float p,q; // 初值
z = 0.0f; // 特例处理
if (n < )
{
return(z);
}
if (n == )
{
z = YfGetFloatValue(valuesPtr, stride, );
return(z);
}
if (n == )
{
float y0 = YfGetFloatValue(valuesPtr, stride, );
float y1 = YfGetFloatValue(valuesPtr, stride, );
z = y0 + (y1 - y0)*t;
return(z);
} float xStep = 1.0f/(n - ); // 开始插值
if (t > 0.0f)
{
p = t/xStep;
i = (int)p;
q = (float)i; if (p > q)
{
i = i+;
}
}
else
{
i = ;
} k = i-;
if (k < )
{
k = ;
} m = i+;
if (m > n-)
{
m = n-;
} for (i = k; i <= m; i++)
{
s = 1.0;
xi = i*xStep; for (j = k; j <= m; j++)
{
if (j != i)
{
xj = j*xStep;
// 拉格朗日插值公式
s = s*(t-xj)/(xi-xj);
}
} z = z + s*YfGetFloatValue(valuesPtr, stride, i);
} return(z);
}

这是神一样的代码,反正我这辈子估计是看不懂了。

切图:

相关软件的下载地址为:http://files.cnblogs.com/WhyEngine/TestSpline.zip

样条之拉格朗日Lagrange(一元全区间)插值函数的更多相关文章

  1. 样条之埃特金(Aitken)逐步插值函数

    核心代码: ////////////////////////////////////////////////////////////////////// // 埃特金逐步插值 //////////// ...

  2. 多项式函数插值:全域多项式插值(一)单项式基插值、拉格朗日插值、牛顿插值 [MATLAB]

    全域多项式插值指的是在整个插值区域内形成一个多项式函数作为插值函数.关于多项式插值的基本知识,见“计算基本理论”. 在单项式基插值和牛顿插值形成的表达式中,求该表达式在某一点处的值使用的Horner嵌 ...

  3. HDU 1540 Tunnel Warfare(线段树+区间合并)

    http://acm.hdu.edu.cn/showproblem.php?pid=1540 题目大意:抗日战争期间进行地道战,存在n个村庄用地道连接,输入D表示破坏某个村庄(摧毁与其相连的地道, 包 ...

  4. hdu4106 区间k覆盖问题(连续m个数,最多选k个数) 最小费用最大流 建图巧妙

    /** 题目:hdu4106 区间k覆盖问题(连续m个数,最多选k个数) 最小费用最大流 建图巧妙 链接:http://acm.hdu.edu.cn/showproblem.php?pid=4106 ...

  5. 线段树模板(单点更新,区间更新,RMQ)

    Bryce1010模板 1.单点更新 说明 单点更新,区间求和(你问我单点求和??你就不会把区间长度设为0啊?) • sum[]为线段树,需要开辟四倍的元素数量的空间. • build()为建树操作 ...

  6. [九省联考2018]秘密袭击coat

    [九省联考2018]秘密袭击coat 研究半天题解啊... 全网几乎唯一的官方做法的题解:链接 别的都是暴力.... 要是n=3333暴力就完了. 一.问题转化 每个联通块第k大的数,直观统计的话,会 ...

  7. Image Processing and Analysis_15_Image Registration:Image registration methods a survey——2003

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  8. 从2019-nCoV趋势预测问题,联想到关于网络安全态势预测问题的讨论

    0. 引言 在这篇文章中,笔者希望和大家讨论一个话题,即未来趋势是否可以被精确或概率性地预测. 对笔者所在的网络安全领域来说,由于网络攻击和网络入侵常常变现出随机性.非线性性的特征,因此纯粹的未来预测 ...

  9. OpenCascade B-Spline Basis Function

    OpenCascade B-Spline Basis Function eryar@163.com Abstract. B-splines are quite a bit more flexible ...

随机推荐

  1. 跟厂长学PHP7内核(四):生命周期之开始前的躁动

    上一章我们对PHP的源码目录结构有了初步了解,本章我们继续从生命周期的维度对PHP进行剖析. 一.概览 生命周期是什么呢?你可以把它看作执行过程,PHP的生命周期也就是它从开始执行到结束执行的过程. ...

  2. JSP中的指令概述和示例

    一.JSP——Java server page :java服务端的页面,这是属于一个后端技术 1.前端技术: html.css.javascript 2.后端技术: java语言.框架(mybatis ...

  3. 用js来实现那些数据结构及算法—目录

    首先,有一点要声明,下面所有文章的所有内容的代码,都不是我一个人独立完成的,它们来自于一本叫做<学习JavaScript数据结构和算法>(第二版),人民邮电出版社出版的这本书.github ...

  4. BZOJ.2668.[CQOI2012]交换棋子(费用流zkw)

    题目链接 首先黑白棋子的交换等价于黑棋子在白格子图上移动,都到达指定位置. 在这假设我们知道这题用网络流做. 那么黑棋到指定位置就是一条路径,考虑怎么用流模拟出这条路径. 我们发现除了路径的起点和终点 ...

  5. error/exception/runtime exception区别

    (1)java中的异常是什么? 异常指的是程序运行过程中出现的非正常情况或错误,当程序违反了语义规则时,jvm就会将出现的错误表示为一个异常抛出.在java中,一切皆对象,异常也是,它被当作一个对象, ...

  6. Gym 100646 Problem E: Su-Su-Sudoku 水题

    Problem E: Su-Su-Sudoku/center> 题目连接: http://codeforces.com/gym/100646/attachments Description By ...

  7. NSLineBreakMode 的区别

    typedef enum {     UILineBreakModeWordWrap = 0,     UILineBreakModeCharacterWrap,     UILineBreakMod ...

  8. Linux Delay Accounting

    https://andrestc.com/post/linux-delay-accounting/ Ever wondered how long is your program spending wh ...

  9. Delphi 类的类 class of 用法

    http://blog.csdn.net/blue_morning/article/details/8815609 Delphi 类的类 class of 用法   这个概念本来在一个关于Delphi ...

  10. 什么时候用var关键字

    C#关键字是伴随这.NET 3.5以后,伴随着匿名函数.LINQ而来, 由编译器帮我们推断具体的类型.总体来说,当一个变量是局部变量(不包括类级别的变量),并且在声明的时候初始化,是使用var关键字的 ...