ac自动机|非自动ac机(当然也有) 笔记+图解
自动ac机
system("poweroff"); // linux
system("shutdown -s -f"); // windows
ac自动机
在计算机科学中,Aho–Corasick算法是由Alfred V. Aho和Margaret J.Corasick 发明的字符串搜索算法,用于在输入的一串字符串中匹配有限组“字典”中的子串 。它与普通字符串匹配的不同点在于同时与所有字典串进行匹配。算法均摊情况下具有近似于线性的时间复杂度,约为字符串的长度加所有匹配的数量。然而由于需要找到所有匹配数,如果每个子串互相匹配(如字典为a,aa,aaa,aaaa,输入的字符串为aaaa),算法的时间复杂度会近似于匹配的二次函数。
反正每次都懒得写解释,直接复制百度百科
比如
kmp应该会吧(不会也没关系),kmp就是在一个字符串中匹配一个子串,那么ac自动机就是在一个字符串中匹配n个字串。
比如字符串为 abcde ,我们要在其中匹配 a bc cde ac 四个字符串,通过朴素方法+kmp优化,复杂度也会随n的增长而增长,但如果有了ac自动机,这一切都会迎刃而解。(挺符合ac观念的_)
Trie树
在学习ac自动机前,先要学习Trie树,是什么东西呢?我们可以想一下,当我们需要储存字符串时,应该怎么储存呢?:
当然是开辟一个数组储存啦:

但如果我们要储存两个字符串,就变成了:

需要的空间翻了一倍,如果我们储存成千上万的字符串,直接 爆炸~~
如果我们使用这个trie树,以树的方式储存,就可以合并为(抱歉,下面都忘记画 d 了……):

瞬间,空间缩小了n倍。但是,我们很快就可以发现,如果我们储存的是 znpdco 和 znp 这两个字符串,就会成为:

我们怎样才能知道这两个字符串分别是 znpdco 和 zn 还是 znpdco 和 znp 还是 znpdco 和 znpd 还是 znpdco 和 znpdc ……呢
所以我们需要定义一个终止符,用红色表示:

很好,现在就很明显知道我们储存的是 znpdco 和 znp 了。
Code
inline void insert(){
int p=0;
for(int i=1;s[i]!='\0';i++){
if(!trie[p][s[i]]){
trie[p][s[i]]=++cnt;
}
p=trie[p][s[i]];
}
tail[p]++;
}
ac自动机
开始进入正题,当我们使用ac自动机时,我们需要想到kmp的一个理念——不回溯,我们在kmp中使用nxt数组防止回溯,那么我们在ac自动机中用fail数组防止回溯。比如:

中,我们如果在匹配 abcd 时出错,我们还可以匹配 bcd ,如果还出错,就匹配 cd ……:

这就是全部的fail指针。
那么如果构建fail指针呢?
构建fail
我们举一个非常有代表性的例子:假设有5个模式串she he say shr her和一个文本串yasherhs,要求在文本串中查找有多少个模式串出现过。
我们先建树:

首先,第一点,我们都知道第一层的s,h 如果就错了,下面的就不用想了,直接回到root根:

接着,我们可以遍历s的每一个点h,a,首先是h,我们可以发现h在s的fail指针中有:

我们就可以直接把它的fail指过去:

为什么可以直接指过去
因为我们的父亲节点根据遍历顺序(个人感觉这个遍历顺序和 bfs 差不多,甚至可以直接理解为bfs)肯定已经指定好fail了。我们可以尝试在父节点中的最优fail中找一找我们的失配节点。
欸,那你这时肯定会说了,如果trie树长这样:

直接指过去就会指向:

一个不存在的虚拟节点。
第三种情况
上面介绍了两种情况,作为根节点的子节点fail直接指向root,作为已匹配好的父节点的子节点,有另一个操作方式,可当我们出现上述指向不存在的节点时,应该怎么办呢?
所以我们在遍历子节点时不可以直接遍历子节点了,而是要把所有节点从a到z遍历一遍,对于真实存在的子节点按情况二处理,对于不存在的节点我们可以把它指向 父节点的fail 的 对应子节点。
有点绕,举个例子:

我们在给 bc 处理时:

除了要处理c,还应当处理 a,b,d,e,f,g,... 。这里我们举d的例子:

把这个d指向父节点中的最优fail的失配节点。


但是,新的点也是一个虚拟节点呀!!
没关系,我们等到遍历到紫色点上:

可以进行一样的操作,将新点连接到另一个新点:


假如最终这个新点也是一个虚拟节点:

没有关系,因为默认赋值为0,所以最终还是会跳到根节点:

不过注意,这里的跳转指的不是fail节点跳转,因为trie树中这些节点本身就不存在,更不会调用它们的fail。所以我们修改的是它们父亲节点的儿子指针。
综上,我们就有了——
Code
inline void makeFail(){
queue<int> q;//典型bfs写法
for(int i='a';i<='z';i++) if(trie[0][i]) q.push(trie[0][i]);//情况一,根节点的子节点可以直接赋值
while(!q.empty()){
int p=q.front();
q.pop();
for(int i='a';i<='z';i++){
if(trie[p][i]){//情况二,在它的父亲fail中找目标节点
fail[trie[p][i]]=trie[fail[p]][i];
q.push(trie[p][i]);//入队
}
else{
trie[p][i]=trie[fail[p]][i];//情况三,以免虚拟节点的出现
}
}
}
}
query
查询步骤就很简单了,但是我们要注意,为了防止重复遍历加两次,就要定义vis。
剩下就很简单了:
int query(){
int p=0,ans=0;
for(int i=1;s[i]!='\0';i++){
p=trie[p][s[i]];
for(int j=p;vis[j]==false;j=fail[j]){
ans+=tail[j];
vis[j]=true;
}
}
return ans;
}
All Code
#include<cstdio>
#include<queue>
using namespace std;
int n;
char s[1000010];
int trie[1000010]['z'+1];
int tail[1000010];
int fail[1000010];
bool vis[1000010];
int cnt;
inline void insert() {
int p=0;
for(int i=1; s[i]!='\0'; i++) {
if(!trie[p][s[i]]) {
trie[p][s[i]]=++cnt;
}
p=trie[p][s[i]];
}
tail[p]++;
}
void makeFail() {
queue<int> q;
for(int i='a'; i<='z'; i++) if(trie[0][i]) q.push(trie[0][i]);
while(!q.empty()) {
int p=q.front();
q.pop();
for(int i='a'; i<='z'; i++) {
if(trie[p][i]) {
fail[trie[p][i]]=trie[fail[p]][i];
q.push(trie[p][i]);
} else {
trie[p][i]=trie[fail[p]][i];
}
}
}
}
int query() {
int p=0,ans=0;
for(int i=1; s[i]!='\0'; i++) {
p=trie[p][s[i]];
for(int j=p; vis[j]==false; j=fail[j]) {
ans+=tail[j];
vis[j]=true;
}
}
return ans;
}
int main() {
scanf("%d",&n);
for(int i=1; i<=n; i++) {
scanf("%s",s+1);
insert();
}
makeFail();
scanf("%s",s+1);
printf("%d",query());
}
例题
说明一下,我在这里写了一个通知小彩蛋,在电脑端可以开启通知权限试试……QWQ
代码同上
ac自动机|非自动ac机(当然也有) 笔记+图解的更多相关文章
- AC自动机板子题/AC自动机学习笔记!
想知道484每个萌新oier在最初知道AC自动机的时候都会理解为自动AC稽什么的,,,反正我记得我当初刚知道这个东西的时候,我以为是什么神仙东西,,,(好趴虽然确实是个对菜菜灵巧比较难理解的神仙知识点 ...
- 洛谷 P3808 【模板】AC自动机(简单版) 题解
原题链接 前置知识: 字典树.(会 \(\texttt{KMP}\) 就更好) 显然呢,本题用 字典树 和 \(\texttt{KMP}\) 无法解决问题. 所以我们发明了一个东西: \(\textt ...
- AC 自动机学习笔记
虽然 NOIp 原地爆炸了,目前进入 AFO 状态,但感觉省选还是要冲一把,所以现在又来开始颓字符串辣 首先先复习一个很早很早就学过但忘记的算法--自动 AC AC自动机. AC 自动机能够在 \(\ ...
- 给宝宝的AC自动机启蒙指南(宝宝的第一本)
AC自动机 根据已有经验,学完虚数会变虚,然后写出的代码就不是人能看的了 所以我们来学实树罢(喜) 以上为废话博客背景 有限状态自动机 首先我们来了解一下自动机是啥. 说的通俗一点,我们可以把自动机看 ...
- 【原创】AC自动机小结
有了KMP和Trie的基础,就可以学习神奇的AC自动机了.AC自动机其实就是在Trie树上实现KMP,可以完成多模式串的匹配. AC自动机 其实 就是创建了一个状态的转移图,思想很 ...
- POJ2778 DNA Sequence(AC自动机+矩阵快速幂)
题目给m个病毒串,问不包含病毒串的长度n的DNA片段有几个. 感觉这题好神,看了好久的题解. 所有病毒串构造一个AC自动机,这个AC自动机可以看作一张有向图,图上的每个顶点就是Trie树上的结点,每个 ...
- POJ 2778 DNA Sequence (AC自动机,矩阵乘法)
题意:给定n个不能出现的模式串,给定一个长度m,要求长度为m的合法串有多少种. 思路:用AC自动机,利用AC自动机上的节点做矩阵乘法. #include<iostream> #includ ...
- HDU 2222 Keywords Search(AC自动机)题解
题意:给你几个keywords,再给你一段文章,问你keywords出现了几次. 思路:这里就要用到多模匹配算法AC自动机了,AC自动机需要KMP和字典树的知识,匹配时是在字典树上,失配我们就要用到类 ...
- 2017ACM暑期多校联合训练 - Team 8 1006 HDU 6138 Fleet of the Eternal Throne (字符串处理 AC自动机)
题目链接 Problem Description The Eternal Fleet was built many centuries ago before the time of Valkorion ...
- AC自动机学习小结
AC自动机 简要说明 \(AC\) 自动机,全称 \(Aho-Corasick\ automaton\) ,是一种有限状态自动机,应用于多模式串匹配.在 \(OI\) 中通常搭配 \(dp\) 食用. ...
随机推荐
- 一文了解 io.LimitedReader类型
1. 引言 io.LimitedReader 提供了一个有限的读取功能,能够手动设置最多从数据源最多读取的字节数.本文我们将从 io.LimitedReader 的基本定义出发,讲述其基本使用和实现原 ...
- 【2020GET】即构科技蒋宁波:教育行业客户需求的核心是什么?
11月24日,由即构科技主办的2020GET大会教育科技分论坛在北京成功召开,来自叮咚课堂.小冰.360OS.蕃茄田艺术.即构科技的6位资深教育/科技大咖,在论坛上进行深度分享. 以下为即构科技联合创 ...
- Redis的设计与实现(1)-SDS简单动态字符串
现在在高铁上, 赶着春节回家过年, 无座站票, 电脑只能放行李架上, 面对着行李架撸键盘--看过<Redis的设计与实现>这本书, 突然想起, 便整理下SDS的内容, 相对后面的章节, 算 ...
- EntityCleanFramework
EF几乎是按照领域的概念诞生,它可以和Clean结合(ECF是我新想出的名字).ECF 是为了统一业务架构开发方式,也可以说成在 微服务架构 中服务的通用开发方式.当有了统一开发方式后,协作将更上一层 ...
- node:windows script host 錯誤 console未定义
错误背景 在开发npm包时,碰到此项报错 解决方案 选中任意js文件,选择打开方式,指定到node中即可
- ChatGPT 助力开发人员改进代码的5个方式
近年来,在软件开发中使用人工智能和机器学习变得越来越普遍.因此,开发人员开始转向像 OpenAI 的 ChatGPT 这样的工具来简化他们的工作,提高他们的工作效率.ChatGPT是一个由 OpenA ...
- 去中心化组件共享方案 —— Webpack Module Federation(模块联邦)
在大型应用中, 我们可能会对其进行拆分,分成容器.主应用和多个子应用,使拆分后的应用独立开发与部署,更加容易维护.但无论是微应用.公共模块应用,都需要放到容器中才能使用. 如果多个应用之间希望资源共享 ...
- [gin]数据解析和绑定
前言 go version: 1.18 本文主要包含JSON.Form.Uri.XML的数据解析与绑定. JSON数据解析与绑定 go代码 package main import ( "ne ...
- MIT6.s081/6.828 lectrue4:page tables 以及 Lab3 心得
不管是计算机组成还是操作系统,虚拟内存都是其中的重要内容,所以这一节我会结合 CSAPP 第九章:虚拟内存 来一起复习(顺便一说,CSAPP 这一节的 lab 是要求设计一个内存分配器,也是很有意思的 ...
- 优化 Redis 集群缓存分配:解决节点间分配不均导致内存溢出问题
一.Redis 集群部署简介 在现代应用程序中,缓存被广泛应用以提高性能和减轻后端数据库的压力.本文将探讨面对 Redis 集群缓存分配不均问题时的解决方法. 我们的 Redis 集群部署包括 3 主 ...