【scipy 基础】--积分和微分方程
对于手工计算来说,积分计算是非常困难的,对于一些简单的函数,我们可以直接通过已知的积分公式来求解,但在更多的情况下,原函数并没有简单的表达式,因此确定积分的反函数变得非常困难。
另外,相对于微分运算来说,积分运算则具有更多的多样性,包括不同的积分方法(如换元积分法、分部积分法等)和积分技巧,需要根据具体的函数形式选择合适的方法,这增加了积分运算的复杂性。
而微分运算有一条基本的规则,即导数运算具有线性性质,可以通过求导法则来简化计算。
Scipy库的积分子模块为我们提供了便捷的积分和微分方程计算接口。
利用Scipy,进行数学或科学研究时,可以把更多的时间花在原理和推导上,计算过程交由Scipy去处理。
1. 主要功能
Scipy的积分模块主要用于进行数学方程的求解和过程控制。
该模块提供了一组函数,可以用于求解一元和多元函数的导数、积分、二阶导数和偏导数等。
此外,该模块还提供了一些用于过程控制和优化的函数。
此模块的函数主要分为以下几类:
- 针对函数对象的积分
- 针对固定样本的积分
- 常微分方程
总之,scipy.integrate模块提供了丰富的函数和算法,用于解决各种数学问题和过程控制问题。
下面通过一些示例来了解其使用方法。
2. 积分运算
2.1. 一重积分
比如计算曲线 \(y = e^{-x}\)在 \(-0.75 \leqslant x \leqslant 0.5\)范围内的面积。
也就是计算积分:\(\int_{-0.75}^{0.5}e^{-x}dx\)
from scipy.integrate import quad
y = lambda x: np.exp(-x)
integral, integral_err = quad(y, -0.75, 0.5)
print("面积为:{}".format(integral))
# 运行结果
面积为:1.5104693569000414
2.2. 二重积分
所谓二重积分,就是积分变量有两个,依次在两个变量上积分得出最终的结果。
比如,对于函数:\(z = x^2 + y^2\),相当于如下的三维曲面。
计算上面的曲面在 \(-2 \leqslant x \leqslant 2\)且 \(-1 \leqslant y \leqslant 1\)情况下,与XY平面所包围的体积。
即:\(\int_{-2}^2\int_{-1}^1(x^2+y^2)dydx\)
from scipy.integrate import dblquad
integrand = lambda y, x: x**2 + y**2
integral, integral_error = dblquad(integrand, -2, 2, -1, 1)
print("体积为:{}".format(integral))
# 运行结果
体积为:13.333333333333334
这个示例中的曲面在X平面和Y平面上是对称的,计算二重积分时,先积分x,还是先积分y,结果是一样的。
也就是:\(\int_{-2}^2\int_{-1}^1(x^2+y^2)dydx = \int_{-2}^2\int_{-1}^1(x^2+y^2)dxdy\)
其他的曲面不一定是对称的,所以二重积分时一定要注意积分的顺序。
3. 常微分方程求解
常微分方程是一类以未知函数和其导数为主要研究对象的数学方程,适合描述不断变化的场景。
3.1. 一元常微分方程
比如计算物体速度的时候,如果加速度恒定,根据牛顿运动定律,很容易就能计算出速度和时间的关系。
但是若加速度也会不断变化的话,如何确定速度和时间的关系呢?
比如假设加速度随速度和时间变化的关系是: \(a = v+3t\)
因为加速度也可以表示为:\(a = \frac{dv}{dt}\),也就是速度对时间的微分,即:\(a = v'\)。
这样,就得到:\(a = \frac{dv}{dt} = v' = v+3t\),其中,\(v' = v+3t\)就是一个常微分方程。
假设时间t为0时,速度v也为0,则得到:\(v'-v-3t=0, v(0)=0\)
下面利用Scipy来求解这个一元常微分方程。
from scipy.integrate import odeint
# v是速度,t是时间
def dvdt(v, t):
return v + 3*t
v0 = 0
t = np.linspace(0, 1, 100)
# 结果res是 N行1列的二维数组(因为是一元方程)
res = odeint(dvdt, v0, t)
# 转置之后第一行就是各个时间点的速度
res_v = res.T[0]
# 绘制速度和时间的关系
plt.plot(t, res_v)
plt.show()

图中曲线的斜率就是加速度,可以看出加速度是随时间不断变大的。
3.2. 二元常微分方程组
对于二元常微分方程组,同样也可以用 scipy 来求解。
比如如下方程组:
\(\begin{align*}
& y_1' = y_1 + y_2^2 - 5x \quad & y_1(0)=0\\
& y_2' = 2y_1 + y_2^3 + sin(x) \quad & y_2(0)=0
\end{align*}\)
求解方法:
from scipy.integrate import odeint
# 创建方程组
def dSdx(S, x):
y1, y2 = S
return [
y1 + y2**2 - 5 * x,
2 * y1 + y2**3 + np.sin(x),
]
# 方程组初始值
y1_0 = 0
y2_0 = 0
S_0 = (y1_0, y2_0)
x = np.linspace(0, 1, 100)
sol = odeint(dSdx, S_0, x)
y1_sol = sol.T[0]
y2_sol = sol.T[1]
# 分别绘制y1,y2和x的关系
plt.plot(x, y1_sol, label="y1")
plt.plot(x, y2_sol, label="y2")
plt.legend()
plt.show()

4. 总结
积分和常微分方程算是应用非常广,但手工计算非常麻烦的两种数学工具,
在学校学习高等数学的时候应该没少吃过这两种计算的苦。
有了Scipy的帮助,则可以摆脱这类复杂计算带来的痛苦,让我们可以专注于创建解决问题的方程。
【scipy 基础】--积分和微分方程的更多相关文章
- SciPy 基础功能
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- scipy应用积分操作
1.什么是scipy? SciPy是一款方便.易于使用.专为科学和工程设计的Python工具包.它包括统计,优化,整合,线性代数模块,傅里叶变换,信号和图像处理,常微分方程求解器等等. integra ...
- SciPy 积分
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- 1 python大数据挖掘系列之基础知识入门
preface Python在大数据行业非常火爆近两年,as a pythonic,所以也得涉足下大数据分析,下面就聊聊它们. Python数据分析与挖掘技术概述 所谓数据分析,即对已知的数据进行分析 ...
- python大数据挖掘系列之基础知识入门
preface Python在大数据行业非常火爆近两年,as a pythonic,所以也得涉足下大数据分析,下面就聊聊它们. Python数据分析与挖掘技术概述 所谓数据分析,即对已知的数据进行分析 ...
- Python小白的数学建模课-09 微分方程模型
小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文. 本文介绍微分方程模型的建模与求解,通过常微分方程.常微分方程组.高阶常微分方程 3个案例手 ...
- Python教程:进击机器学习(五)--Scipy《转》
Scipy简介 文件输入和输出scipyio 线性代数操作scipylinalg 快速傅里叶变换scipyfftpack 优化器scipyoptimize 统计工具scipystats Scipy简介 ...
- SciPy 信号处理
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- SciPy 统计
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- SciPy 线性代数
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
随机推荐
- 图片转ASCII字符图案的原理(可调整亮度对比度 宽高度)
来, 先看效果哈哈哈哈! 演示地址: http://ascii-picture.imlht.com/ "\` """ . "\`"" ...
- Centos查看挂载目录并挂载
一.概述 本次已Centos7作为示例 挂载系统没有挂载的磁盘,可以分如下几步 1.查看系统哪些盘未挂载 2.给未挂载的磁盘进行分区 3.格式化磁盘并向磁盘中写入系统文件 4.挂载磁盘 5.设置开机自 ...
- 【Azure Event Hub】Event Hub的Process Data页面无法通过JSON格式预览数据
问题描述 在Event Hub的门户页面中,可以通过Process Data页面查看Event Hub中的数据,但是当使用JSON格式预览时(View in JSON),却出现错误. 消息一: No ...
- HashMap源码的阅读笔记
注释部分 Hash table based implementation of the <tt>Map</tt> interface. This * implementatio ...
- 三个编程思想:面向对象编程、面向接口编程、面向过程编程【概念解析系列_1】【C# 基础】
〇.前言 对于 .Net 中的编程思想还是十分重要的,也是编码出高效的程序的基础! 在使用之前了解其本质,那么用起来就游刃有余.下面来简单对比下三个编程思想,看下它们都是什么,它们之间又有什么关系. ...
- 查看Nginx是否启动
查看Nginx进程 ps -ef | grep nginx 输出如下: root 1036 1 0 Jul15 ? 00:00:00 nginx: master process /www/server ...
- js高级之内存管理与闭包
javacript中的内存管理 javascript中不需要我们手动去分配内存,当我们创建变量的时候,会自动给我们分配内存. 创建基本数据类型时,会在栈内存中开辟空间存放变量 创建引用数据类型时,会在 ...
- Flutter系列文章-Flutter在实际业务中的应用
不同场景下的解决方案 1. 跨平台开发: 在移动应用开发中,面对不同的平台(iOS和Android),我们通常需要编写两套不同的代码.而Flutter通过一套代码可以构建适用于多个平台的应用,大大提高 ...
- 零代码,使用 Dify 和 Laf 两分钟接入企业微信 AI 机器人
Dify 允许创建 AI 应用,并提供二次开发的能力.这里我将演示创建一个法律问答助手的 AI 应用,称作"知法".在本篇教程中,我将指导你为"知法"接入企业微 ...
- 《Kali渗透基础》03. 被动信息收集
@ 目录 1:被动信息收集 1.1:收集内容 1.2:信息用途 2:域名信息收集 2.1:nslookup 2.1.1:命令参数 2.1.2:示例 - 命令行 2.1.3:示例 - 交互式 2.2:d ...