SciPy库的optimize模块主要用于执行各种优化任务。
优化是寻找特定函数的最小值或最大值的过程,通常用于机器学习、数据分析、工程和其他领域。

scipy.optimize提供了多种优化算法,包括梯度下降法、牛顿法、最小二乘法等,可以解决各种复杂的优化问题。
该模块还包含一些特定的函数,用于解决某些特定类型的优化问题,如多维非线性优化、约束优化、最小二乘问题等。
此外,scipy.optimize还提供了一些工具,如多线程支持、边界条件处理、数值稳定性措施等,以提高优化的效率和准确性。

1. 主要功能

最优化是数学学科中的一个重要研究领域,optimize模块包含的各类函数能够帮助我们节省大量的计算时间和精力。

类别 说明
优化 包含标量函数优化,局部优化,全局优化等各类方法
最小二乘法和曲线拟合 包含求解最小二乘法问题,各种拟合曲线的方法
求根 包含多种求根的方法,比如布伦特方法,牛顿-拉夫森方法等10来种求根方法
线性规划 内置多种线性规划算法以及混合整数线性规划计算等
分配问题 解决线性和分配问题,包括二次分配和图匹配问题的近似解等
工具函数 包含一些通用的计算方法,比如有限差分近似,海森近似,线搜索等计算函数
遗留函数 即将被淘汰的一些函数,不建议再继续使用

下面通过曲线拟合非线性方程组求解两个示例演示optimize模块的使用。

2. 曲线拟合示例

所谓曲线拟合,其实就是找到一个函数,能够尽可能的经过或接近一系列离散的点。
然后就可以用这个函数来预测离散点的变化趋势。

2.1. 最小二乘法

optimize模块的最小二乘法拟合曲线需要定义一个目标函数和一个残差函数
最小二乘法通过迭代寻找目标函数中参数的最优值,
残差函数是用来计算目标函数的返回值实际值之间的误差的。

首先,加载需要拟合的离散数据。

import pandas as pd

data = pd.read_csv("d:/share/data/A0A01.csv")
data = data[data["zb"] == "A0A0101"]
data = data.sort_values("sj")
data.head()


数据来源:https://databook.top/nation/A0A (其中的A0A01.csv

然后,依据其中1978年~2022年居民人均可支配收入绘制散点图。

from matplotlib.ticker import MultipleLocator
import matplotlib.pyplot as plt ax = plt.subplot()
ax.scatter(data["sjCN"], data["value"], marker='*', color='r')
ax.xaxis.set_major_locator(MultipleLocator(4))
ax.set_title("居民人均可支配收入(元)") plt.xticks(rotation=45)
plt.show()

最后,用optimize模块提供的最小二乘法拟合居民人均可支配收入的变化曲线。

from scipy.optimize import least_squares

# 目标函数
def target_func(p, x):
return p[0]*np.exp(p[1]*x) + p[2] # 残差函数
def residual(p, x, dy):
return target_func(p, x) - dy p0 = [1, 1, 0]
x = range(len(data))
y = data["value"]
# 最小二乘法迭代目标函数的参数
result = least_squares(residual, p0, args=(x, y)) ax = plt.subplot()
ax.xaxis.set_major_locator(MultipleLocator(4))
ax.set_title("居民人均可支配收入(元)") ax.scatter(data["sjCN"], data["value"], marker='*', color='r')
# 这里的result.x就是迭代后的最优参数
ax.plot(x, target_func(result.x, x), color='g') plt.xticks(rotation=45)
plt.show()


图中绿色的曲线就是拟合的曲线,根据拟合出的曲线和目标函数,
就可以预测以后的居民人均可支配收入的变化情况。

2.2. curve_fit方法

最小二乘法需要定义目标函数残差函数,使用起来有些繁琐,optimize模块中还提供了一个curve_fit函数。
可以简化曲线拟合的过程。

from scipy.optimize import curve_fit

# 目标函数
def curve_fit_func(x, p0, p1, p2):
return p0*np.exp(p1*x) + p2 # fitp 就是计算出的目标函数的最优参数
fitp, _ = curve_fit(curve_fit_func, x, y, [1, 1, 0]) ax = plt.subplot()
ax.xaxis.set_major_locator(MultipleLocator(4))
ax.set_title("居民人均可支配收入(元)") ax.scatter(data["sjCN"], data["value"], marker='*', color='r')
ax.plot(x, curve_fit_func(x, *fitp), color='b') plt.xticks(rotation=45)
plt.show()


蓝色的线就是拟合曲线,拟合结果和使用最小二乘法拟合出的是一样的,只是代码可以简化一些。

3. 非线性方程组求解示例

众所周知,手工求解非线性方程是非常困难的,如果经常遇到求解非线性方程的情况,optimize模块绝对能成为你的一个称手工具。

3.1. 非线性方程

使用optimize模块求解非线性方程非常简单。
比如方程:\(2^x+sin(x)-x^3=0\)

from scipy.optimize import root

f = lambda x: 2**x + np.sin(x) - x**3

result = root(f, [1, 1], method='hybr') 

# result.x 是方程的解
result.x
# 运行结果:
array([1.58829918, 1.58829918])

实际使用时,将变量f对应的方程换成你的方程即可。
注意,求解方程的 root 方法的参数method,这个参数支持多种求解方程的方法,可以根据方程的特点选择不同的method

支持的method列表可参考官方文档:https://docs.scipy.org/doc/scipy/reference/optimize.html#multidimensional

3.2. 非线性方程组

对于方程组,求解的方法如下:
比如方程组:\(\begin{cases}
\begin{align*}
x^2 +y-3 & =0 \\
(x-2)^2+y-1 & =0
\end{align*}
\end{cases}\)

fs = lambda x: np.array(
[
x[0] ** 2 + x[1] - 3,
(x[0] - 2) ** 2 + x[1] - 1,
]
) result = root(fs, [1, 1], method="hybr")
result.x
# 运行结果:
array([1.5 , 0.75])

方程组中方程个数多的话,直接添加到变量fs的数组中即可。

4. 总结

总的来说,scipy.optimize是一个强大且易用的优化工具箱,用于解决各种复杂的优化问题。
它对于需要优化算法的许多科学和工程领域都具有重要价值。
通过使用这个模块,用户可以节省大量时间和精力,同时还能保证优化的质量和准确性。

【scipy 基础】--最优化的更多相关文章

  1. SciPy 基础功能

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  2. SciPy - 科学计算库(上)

    SciPy - 科学计算库(上) 一.实验说明 SciPy 库建立在 Numpy 库之上,提供了大量科学算法,主要包括这些主题: 特殊函数 (scipy.special) 积分 (scipy.inte ...

  3. 003 Scipy库简介

    参考文档补充原本的文档: https://www.cnblogs.com/mrchige/p/6504324.html 一:原本的简单介绍 1.Scipy库 Scipy库是基于python生态的一款开 ...

  4. python-数据处理的包Numpy,scipy,pandas,matplotlib

    一,NumPy包(numeric python,数值计算) 该包主要包含了存储单一数据类型的ndarry对象的多维数组和处理数组能力的函数ufunc对象.是其它包数据类型的基础.只能处理简单的数据分析 ...

  5. SciPy 信号处理

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  6. SciPy 统计

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  7. SciPy 线性代数

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  8. SciPy 图像处理

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  9. SciPy 优化

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  10. SciPy 积分

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

随机推荐

  1. Git练习网址

    爲了方便学习git指令,让新手们更容易地理解,所以推荐一些git练习和博文网址 推荐的网址如下 网址一:Learn Git Branching! https://learngitbranching.j ...

  2. don't be shy to use reshape

    don't be shy to use reshape

  3. 四 APPIUM GUI讲解(Windows版)(转)

    Windows版本的APPIUM GUI有以下图标或者按钮: ·Android Settings  - Android设置按钮,所有和安卓设置的参数都在这个里面 ·General Settings – ...

  4. 记一次 .NET某报关系统 非托管泄露分析

    一:背景 1. 讲故事 前段时间有位朋友找到我,说他的程序内存会出现暴涨,让我看下是怎么事情?而且还告诉我是在 Linux 环境下,说实话在Linux上分析.NET程序难度会很大,难度大的原因在于Li ...

  5. 文盘Rust -- Mutex解决并发写文件乱序问题

    在实际开发过程中,我们可能会遇到并发写文件的场景,如果处理不当很可能出现文件内容乱序问题.下面我们通过一个示例程序描述这一过程并给出解决该问题的方法. use std::{ fs::{self, Fi ...

  6. DateTime 相关的操作汇总【C# 基础】

    〇.前言 在日常开发中,日期值当然是不可或缺的,能够清晰的在脑海中梳理出最快捷的实现也非常重要,那么今天就来汇总一下. 一.C# 中的本机时间以及格式化 如何取当前(本机)时间?很简单,一句话解决: ...

  7. Linux查看磁盘空间,文件系统、挂载

    Linux磁盘空间,文件系统.挂载 概述 在使用以下命令查看磁盘使用情况时 df -h du -sh 目标路径 作为初级开发者,Linux入门级选手,可能不禁要问Linux系统的文件系统跟window ...

  8. Vue【原创】基于elementui的【分组多选下拉框group-select】

    效果图: 如图分为多选模式和单选模式. group-select: 1 <template> 2 <div> 3 <el-select 4 v-model="i ...

  9. WPF学习 - 闭坑(持续更新)

    坑1:自定义控件设计原则: 既然称之为控件,那么就必定有界面与行为两部分. 界面就是展示给用户看的,用于承载类的属性.方法.事件等. 行为就是类的方法,以及这些方法需要用到的属性.字段等. WPF设计 ...

  10. linux shell根据关键字用sed注释掉整行

    一.将带有ab的行注释掉 # cat test # sed -i '/ab/s/^\(.*\)$/#\1/g' test ab是关键字 s是语法替换 ^是行首 $是行尾 \是转义符 数字1带表前述匹配 ...