前言

最近在给 opentelemetry-java-instrumentation 提交了一个 PR,是关于给 gRPC 新增四个 metrics:

  • rpc.client.request.size: 客户端请求包大小
  • rpc.client.response.size:客户端收到的响应包大小
  • rpc.server.request.size:服务端收到的请求包大小
  • rpc.server.response.size:服务端响应的请求包大小

这个 PR 的主要目的就是能够在指标监控中拿到 RPC 请求的包大小,而这里的关键就是如何才能拿到这些包的大小。

首先支持的是 gRPC(目前在云原生领域使用的最多),其余的 RPC 理论上也是可以支持的:

在实现的过程中我也比较好奇 OpenTelemetry 框架是如何给 gRPC 请求创建 span 调用链的,如下图所示:



这是一个 gRPC 远程调用,java-demo 是 gRPC 的客户端,k8s-combat 是 gRPC 的服务端

在开始之前我们可以根据 OpenTelemetry 的运行原理大概猜测下它的实现过程。

首先我们应用可以创建这些链路信息的前提是:使用了 OpenTelemetry 提供的 javaagent,这个 agent 的原理是在运行时使用了 byte-buddy 增强了我们应用的字节码,在这些字节码中代理业务逻辑,从而可以在不影响业务的前提下增强我们的代码(只要就是创建 span、metrics 等数据)

Spring 的一些代理逻辑也是这样实现的

gRPC 增强原理

而在工程实现上,我们最好是不能对业务代码进行增强,而是要找到这些框架提供的扩展接口。

gRPC 来说,我们可以使用它所提供的 io.grpc.ClientInterceptorio.grpc.ServerInterceptor 接口来增强代码。

打开 io.opentelemetry.instrumentation.grpc.v1_6.TracingClientInterceptor 类我们可以看到它就是实现了 io.grpc.ClientInterceptor

而其中最关键的就是要实现 io.grpc.ClientInterceptor#interceptCall 函数:

@Override
public <REQUEST, RESPONSE> ClientCall<REQUEST, RESPONSE> interceptCall(
MethodDescriptor<REQUEST, RESPONSE> method, CallOptions callOptions, Channel next) {
GrpcRequest request = new GrpcRequest(method, null, null, next.authority());
Context parentContext = Context.current();
if (!instrumenter.shouldStart(parentContext, request)) {
return next.newCall(method, callOptions);
}
Context context = instrumenter.start(parentContext, request);
ClientCall<REQUEST, RESPONSE> result;
try (Scope ignored = context.makeCurrent()) {
try {
// call other interceptors
result = next.newCall(method, callOptions);
} catch (Throwable e) {
instrumenter.end(context, request, Status.UNKNOWN, e);
throw e;
} }
return new TracingClientCall<>(result, parentContext, context, request);
}

这个接口是 gRPC 提供的拦截器接口,对于 gRPC 客户端来说就是在发起真正的网络调用前后会执行的方法。

所以在这个接口中我们就可以实现创建 span 获取包大小等逻辑。

使用 byte-buddy 增强代码

不过有一个问题是我们实现的 io.grpc.ClientInterceptor 类需要加入到拦截器中才可以使用:

var managedChannel = ManagedChannelBuilder.forAddress(host, port) .intercept(new TracingClientInterceptor()) // 加入拦截器
.usePlaintext()
.build();

但在 javaagent 中是没法给业务代码中加上这样的代码的。

此时就需要 byte-buddy 登场了,它可以动态修改字节码从而实现类似于修改源码的效果。

io.opentelemetry.javaagent.instrumentation.grpc.v1_6.GrpcClientBuilderBuildInstr umentation 类里可以看到 OpenTelemetry 是如何使用 byte-buddy 的。

  @Override
public ElementMatcher<TypeDescription> typeMatcher() {
return extendsClass(named("io.grpc.ManagedChannelBuilder"))
.and(declaresField(named("interceptors")));
} @Override
public void transform(TypeTransformer transformer) {
transformer.applyAdviceToMethod(
isMethod().and(named("build")),
GrpcClientBuilderBuildInstrumentation.class.getName() + "$AddInterceptorAdvice");
} @SuppressWarnings("unused")
public static class AddInterceptorAdvice { @Advice.OnMethodEnter(suppress = Throwable.class)
public static void addInterceptor(
@Advice.This ManagedChannelBuilder<?> builder,
@Advice.FieldValue("interceptors") List<ClientInterceptor> interceptors) {
VirtualField<ManagedChannelBuilder<?>, Boolean> instrumented =
VirtualField.find(ManagedChannelBuilder.class, Boolean.class);
if (!Boolean.TRUE.equals(instrumented.get(builder))) {
interceptors.add(0, GrpcSingletons.CLIENT_INTERCEPTOR);
instrumented.set(builder, true);
}
}
}

从这里的源码可以看出,使用了 byte-buddy 拦截了 io.grpc.ManagedChannelBuilder#intercept(java.util.List<io.grpc.ClientInterceptor>) 函数。

io.opentelemetry.javaagent.extension.matcher.AgentElementMatchers#extendsClass/ isMethod 等函数都是 byte-buddy 库提供的函数。

而这个函数正好就是我们需要在业务代码里加入拦截器的地方。

interceptors.add(0, GrpcSingletons.CLIENT_INTERCEPTOR);
GrpcSingletons.CLIENT_INTERCEPTOR = new TracingClientInterceptor(clientInstrumenter, propagators);

通过这行代码可以手动将 OpenTelemetry 里的 TracingClientInterceptor 加入到拦截器列表中,并且作为第一个拦截器。

而这里的:

extendsClass(named("io.grpc.ManagedChannelBuilder"))
.and(declaresField(named("interceptors")))

通过函数的名称也可以看出是为了找到 继承了io.grpc.ManagedChannelBuilder 类中存在成员变量 interceptors 的类。

transformer.applyAdviceToMethod(
isMethod().and(named("build")),
GrpcClientBuilderBuildInstrumentation.class.getName() + "$AddInterceptorAdvice");

然后在调用 build 函数后就会进入自定义的 AddInterceptorAdvice 类,从而就可以拦截到添加拦截器的逻辑,然后把自定义的拦截器加入其中。

获取 span 的 attribute

我们在 gRPC 的链路中还可以看到这个请求的具体属性,比如:

  • gRPC 服务提供的 IP 端口。
  • 请求的响应码
  • 请求的 service 和 method
  • 线程等信息。

这些信息在问题排查过程中都是至关重要的。

可以看到这里新的 attribute 主要是分为了三类:

  • net.* 是网络相关的属性
  • rpc.* 是和 grpc 相关的属性
  • thread.* 是线程相关的属性

所以理论上我们在设计 API 时最好可以将这些不同分组的属性解耦开,如果是 MQ 相关的可能还有一些 topic 等数据,所以各个属性之间是互不影响的。

带着这个思路我们来看看 gRPC 这里是如何实现的。

clientInstrumenterBuilder
.setSpanStatusExtractor(GrpcSpanStatusExtractor.CLIENT)
.addAttributesExtractors(additionalExtractors)
.addAttributesExtractor(RpcClientAttributesExtractor.create(rpcAttributesGetter))
.addAttributesExtractor(ServerAttributesExtractor.create(netClientAttributesGetter))
.addAttributesExtractor(NetworkAttributesExtractor.create(netClientAttributesGetter))

OpenTelemetry 会提供一个 io.opentelemetry.instrumentation.api.instrumenter.InstrumenterBuilder#addAttributesExtractor构建器函数,用于存放自定义的属性解析器。

从这里的源码可以看出分别传入了网络相关、RPC 相关的解析器;正好也就对应了图中的那些属性,也满足了我们刚才提到的解耦特性。

而每一个自定义属性解析器都需要实现接口 io.opentelemetry.instrumentation.api.instrumenter.AttributesExtractor

public interface AttributesExtractor<REQUEST, RESPONSE> {
}

这里我们以 GrpcRpcAttributesGetter 为例。

enum GrpcRpcAttributesGetter implements RpcAttributesGetter<GrpcRequest> {
INSTANCE; @Override
public String getSystem(GrpcRequest request) {
return "grpc";
} @Override
@Nullable
public String getService(GrpcRequest request) {
String fullMethodName = request.getMethod().getFullMethodName();
int slashIndex = fullMethodName.lastIndexOf('/');
if (slashIndex == -1) {
return null;
}
return fullMethodName.substring(0, slashIndex);
}

可以看到 system 是写死的 grpc,也就是对于到页面上的 rpc.system 属性。

而这里的 getService 函数则是拿来获取 rpc.service 属性的,可以看到它是通过 gRPC 的method 信息来获取 service 的。


public interface RpcAttributesGetter<REQUEST> {  

  @Nullable
String getService(REQUEST request);
}

而这里 REQUEST 其实是一个泛型,在 gRPC 里是 GrpcRequest,在其他 RPC 里这是对应的 RPC 的数据。

这个 GrpcRequest 是在我们自定义的拦截器中创建并传递的。

而我这里需要的请求包大小也是在拦截中获取到数据然后写入进 GrpcRequest。

static <T> Long getBodySize(T message) {
if (message instanceof MessageLite) {
return (long) ((MessageLite) message).getSerializedSize();
} else {
// Message is not a protobuf message
return null;
}}

这样就可以实现不同的 RPC 中获取自己的 attribute,同时每一组 attribute 也都是隔离的,互相解耦。

自定义 metrics

每个插件自定义 Metrics 的逻辑也是类似的,需要由框架层面提供 API 接口:

public InstrumenterBuilder<REQUEST, RESPONSE> addOperationMetrics(OperationMetrics factory) {
operationMetrics.add(requireNonNull(factory, "operationMetrics"));
return this;
}
// 客户端的 metrics
.addOperationMetrics(RpcClientMetrics.get()); // 服务端的 metrics
.addOperationMetrics(RpcServerMetrics.get());

之后也会在框架层面回调这些自定义的 OperationMetrics:

    if (operationListeners.length != 0) {
// operation listeners run after span start, so that they have access to the current span
// for capturing exemplars
long startNanos = getNanos(startTime);
for (int i = 0; i < operationListeners.length; i++) {
context = operationListeners[i].onStart(context, attributes, startNanos);
}
} if (operationListeners.length != 0) {
long endNanos = getNanos(endTime);
for (int i = operationListeners.length - 1; i >= 0; i--) {
operationListeners[i].onEnd(context, attributes, endNanos);
}
}

这其中最关键的就是两个函数 onStart 和 onEnd,分别会在当前这个 span 的开始和结束时进行回调。

所以通常的做法是在 onStart 函数中初始化数据,然后在 onEnd 结束时统计结果,最终可以拿到 metrics 所需要的数据。

以这个 rpc.client.duration 客户端的请求耗时指标为例:

@Override
public Context onStart(Context context, Attributes startAttributes, long startNanos) {
return context.with(
RPC_CLIENT_REQUEST_METRICS_STATE,
new AutoValue_RpcClientMetrics_State(startAttributes, startNanos));
} @Override
public void onEnd(Context context, Attributes endAttributes, long endNanos) {
State state = context.get(RPC_CLIENT_REQUEST_METRICS_STATE);
Attributes attributes = state.startAttributes().toBuilder().putAll(endAttributes).build();
clientDurationHistogram.record(
(endNanos - state.startTimeNanos()) / NANOS_PER_MS, attributes, context);
}

在开始时记录下当前的时间,结束时获取当前时间和结束时间的差值正好就是这个 span 的执行时间,也就是 rpc client 的处理时间。

OpenTelemetry 中绝大多数的请求时间都是这么记录的。

Golang 增强

而在 Golang 中因为没有 byte-buddy 这种魔法库的存在,不可以直接修改源码,所以通常的做法还是得硬编码才行。

还是以 gRPC 为例,我们在创建 gRPC server 时就得指定一个 OpenTelemetry 提供的函数。

s := grpc.NewServer(
grpc.StatsHandler(otelgrpc.NewServerHandler()),
)

在这个 SDK 中也会实现刚才在 Java 里类似的逻辑,限于篇幅具体逻辑就不细讲了。

总结

以上就是 gRPCOpenTelemetry 中的具体实现,主要就是在找到需要增强框架是否有提供扩展的接口,如果有就直接使用该接口进行埋点。

如果没有那就需要查看源码,找到核心逻辑,再使用 byte-buddy 进行埋点。

比如 Pulsar 并没有在客户端提供一些扩展接口,只能找到它的核心函数进行埋点。

而在具体埋点过程中 OpenTelemetry 提供了许多解耦的 API,方便我们实现埋点所需要的业务逻辑,也会在后续的文章继续分析 OpenTelemetry 的一些设计原理和核心 API 的使用。

这部分 API 的设计我觉得是 OpenTelemetry 中最值得学习的地方。

参考链接:

OpenTelemetry 实战:gRPC 监控的实现原理的更多相关文章

  1. [原创].NET 业务框架开发实战之九 Mapping属性原理和验证规则的实现策略

    原文:[原创].NET 业务框架开发实战之九 Mapping属性原理和验证规则的实现策略 .NET 业务框架开发实战之九 Mapping属性原理和验证规则的实现策略 前言:之前的讨论一直关注在怎么从D ...

  2. Spring Boot 揭秘与实战 源码分析 - 工作原理剖析

    文章目录 1. EnableAutoConfiguration 帮助我们做了什么 2. 配置参数类 – FreeMarkerProperties 3. 自动配置类 – FreeMarkerAutoCo ...

  3. 【Go】Golang实现gRPC的Proxy的原理

    背景 gRPC是Google开始的一个RPC服务框架, 是英文全名为Google Remote Procedure Call的简称. 广泛的应用在有RPC场景的业务系统中,一些架构中将gRPC请求都经 ...

  4. Java并发编程原理与实战九:synchronized的原理与使用

    一.理论层面 内置锁与互斥锁 修饰普通方法.修饰静态方法.修饰代码块 package com.roocon.thread.t3; public class Sequence { private sta ...

  5. Linux实战教学笔记15:磁盘原理

    第十五节 磁盘原理 标签(空格分隔): Linux实战教学笔记 1,知识扩展 非脚本方式的一条命令搞定批量创建用户并设置随机10位字母数字组合密码. 1.1 sed的高级用法 [root@chensi ...

  6. Linux实战教学笔记16:磁盘原理

    第十五节 磁盘原理 标签(空格分隔): Linux实战教学笔记 1,知识扩展 非脚本方式的一条命令搞定批量创建用户并设置随机10位字母数字组合密码. 1.1 sed的高级用法 [root@chensi ...

  7. 【Java编程实战】Metasploit_Java后门运行原理分析以及实现源码级免杀与JRE精简化

    QQ:3496925334 文章作者:MG1937 CNBLOG博客ID:ALDYS4 未经许可,禁止转载 某日午睡,迷迷糊糊梦到Metasploit里有个Java平台的远控载荷,梦醒后,打开虚拟机, ...

  8. Java 中的监控与管理原理概述

    点赞再看,动力无限.Hello world : ) 微信搜「程序猿阿朗 」. 本文 Github.com/niumoo/JavaNotes 和 程序猿阿朗博客 已经收录,有很多知识点和系列文章. 当前 ...

  9. Kustomize 生产实战-注入监控 APM Agent

    Kustomize 简介 Kubernetes 原生配置管理工具, 它自定义引入了一种无需模板的方式来定制应用程序配置,从而简化了对现成应用程序的使用.目前,在kubectl中内置了,通过 apply ...

  10. zookeeper配置中心实战--solrcloud zookeeper配置中心原理及源码分析

    程序的发展,需要引入集中配置: 随着程序功能的日益复杂,程序的配置日益增多:各种功能的开关.参数的配置.服务器的地址…… 并且对配置的期望也越来越高,配置修改后实时生效,灰度发布,分环境.分集群管理配 ...

随机推荐

  1. 什么是JS执行上下文?

    我们都知道,JS代码的执行顺序总是与代码先后顺序有所差异,当先抛开异步问题你会发现就算是同步代码,它的执行也与你的预期不一致,比如: function f1() { console.log('听风是风 ...

  2. Java BigDecimal 算术运算

    算术运算 BigDecimal bignum1 = new BigDecimal("10"); BigDecimal bignum2 = new BigDecimal(" ...

  3. C# 日期帮助类

    using System; using System.Data; namespace Erp.Ship.Tool { [Serializable] public enum DateInterval { ...

  4. Vscode连接虚拟机报错

    Vscode 连接虚拟机报错问题解决 问题解释 Permission denied, please try again.出现这个问题通常表示身份验证失败. 可能的原因有 SSH用户密码错误 SSH端口 ...

  5. CF580C

    说句实话,这道题作为蓝题过于简单了一点 #include<iostream> #include<utility> #include<vector> using na ...

  6. ArkTS基础知识

    [习题]ArkTS基础知识 及格分85/ 满分100   判断题 1. 循环渲染ForEach可以从数据源中迭代获取数据,并为每个数组项创建相应的组件. 正确(True)错误(False) 回答正确 ...

  7. OLOR:已开源,向预训练权值对齐的强正则化方法 | AAAI 2024

    随着预训练视觉模型的兴起,目前流行的视觉微调方法是完全微调.由于微调只专注于拟合下游训练集,因此存在知识遗忘的问题.论文提出了基于权值回滚的微调方法OLOR(One step Learning, On ...

  8. 使用 @Audited 增强Spring Boot 应用程序的数据审计能力

    介绍 在Spring Boot开发的动态世界中,确保数据完整性和跟踪变化是至关重要的.实现这一目标的一个强大工具是@Audited注解.本文深入探讨了该注解的复杂性.其目的.实现步骤以及如何利用其功能 ...

  9. mybatisplus轻松完成一次模糊+分页查询

    之前一直用mybatis+pageinfo完成模糊+分页查询,还需要手写sql语句,之前一直没做尝试,今天试了试mybatisplus一个人完成模糊+分页,挺简单的 有一个小插曲是,我的前端接受的da ...

  10. Windows cifs共享给linux

    Windows 搜索启用或关闭Windows功能 启用cifs 共享文件并添加普通用户 解禁guest用户和设置本地策略 右键计算机 win+r输入secpol.msc 将guest删除 修改网络访问 ...