It is a little known fact that cows love apples. Farmer John has two apple trees (which are conveniently numbered 1 and 2) in his field, each full of apples. Bessie cannot reach the apples when they are on the tree, so she must wait for them to fall. However, she must catch them in the air since the apples bruise when they hit the ground (and no one wants to eat bruised apples). Bessie is a quick eater, so an apple she does catch is eaten in just a few seconds.
Each minute, one of the two apple trees drops an apple. Bessie, having much practice, can catch an apple if she is standing under a tree from which one falls. While Bessie can walk between the two trees quickly (in much less than a minute), she can stand under only one tree at any time. Moreover, cows do not get a lot of exercise, so she is not willing to walk back and forth between the trees endlessly (and thus misses some apples).
Apples fall (one each minute) for T (1 <= T <= 1,000) minutes. Bessie is willing to walk back and forth at most W (1 <= W <= 30) times. Given which tree will drop an apple each minute, determine the maximum number of apples which Bessie can catch. Bessie starts at tree 1.
Input
* Line 1: Two space separated integers: T and W
* Lines 2..T+1: 1 or 2: the tree that will drop an apple each minute.
Output
* Line 1: The maximum number of apples Bessie can catch without walking more than W times.
Sample Input
7 2
2
1
1
2
2
1
1
Sample Output
6
Hint

INPUT DETAILS:
Seven apples fall - one from tree 2, then two in a row from tree 1, then two in a row from tree 2, then two in a row from tree 1. Bessie is willing to walk from one tree to the other twice.
OUTPUT DETAILS:
Bessie can catch six apples by staying under tree 1 until the first two have dropped, then moving to tree 2 for the next two, then returning back to tree 1 for the final two.

仍然是道很经典的动态规划,比起之前的手足无措,这题有了不少的思路,但是由于对状态的定义不太好导致牵连着对状态间的转移也变得模糊起来。

开始是把dp[i][j]定义为第i分钟时,可移动次数还有j次时得到的苹果数量,参考别人博客后发现自己这样的定义并不好。

老规矩,首先定义状态:dp[i][j]表示在第i分钟时,已经移动了j次后得到的苹果数量

接着来看状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i-1][j-1]) ,然后判断当前是否在第i分钟掉苹果的那颗树下,是的话,dp[i][j]++

解释(以下提供几种描述):

1.对于第i秒移动j次的状态,可以由两种前驱状态转移得来,一种是i-1秒时就已经移动了j次,然后第i秒就不移动了,另一种是i-1秒移动了j-1次,然后她还可以再移动一次得到移动j次。

2.第i分钟能得到的苹果数量,等于在第i-1分钟时,在树1和树2下得到苹果的最大值(j为偶数则在树1下面,奇数则在树2下面)

3.在第i分钟奶牛到某棵树下有两种状态:1.从另一棵树走过来(dp[i-1][j-1])    2.本来就呆在这棵树下(dp[i-1][j])

由于移动偶数次可以回到树1,移动奇数次可以回到树2,移动j次时,若j%2+1==a[i]就表明当前位置恰好有苹果落下。

最后须注意下初始化与边界计算

附上AC代码:

#include <cstdio>
#include <algorithm>
using namespace std; const int maxn = 1005; int a[maxn], dp[maxn][40]; int main()
{
int t, w;
while(~scanf("%d%d", &t, &w)) {
for(int i = 1; i <= t; i++)
scanf("%d", &a[i]);
if(a[1] == 1) {
dp[1][0] = 1, dp[1][1] = 0;
}
else {
dp[1][0] = 0, dp[1][1] = 1;
}
for(int i = 2; i <= t; i++) {
for(int j = 0; j <= w; j++) {
if(j == 0) dp[i][j] = dp[i-1][j] + a[i]%2;
else {
dp[i][j] = max(dp[i-1][j], dp[i-1][j-1]);
if(j%2+1 == a[i]) dp[i][j]++;
}
}
} int ans = 0;
for(int i = 0; i <= w; i++)
ans = max(ans, dp[t][i]);
printf("%d\n", ans);
} return 0;
}

刚发现有按照我那种思路来的,但是明天要考试了,得看下C语言准备下,先放上博客地址,回头再看

https://www.cnblogs.com/Philip-Tell-Truth/p/4815021.html

POJ-2385 Apple Catching(基础dp)的更多相关文章

  1. poj 2385 Apple Catching 基础dp

    Apple Catching   Description It is a little known fact that cows love apples. Farmer John has two ap ...

  2. POJ 2385 Apple Catching【DP】

    题意:2棵苹果树在T分钟内每分钟随机由某一棵苹果树掉下一个苹果,奶牛站在树#1下等着吃苹果,它最多愿意移动W次,问它最多能吃到几个苹果.思路:不妨按时间来思考,一给定时刻i,转移次数已知为j, 则它只 ...

  3. POJ 2385 Apple Catching ( 经典DP )

    题意 : 有两颗苹果树,在 1~T 的时间内会有两颗中的其中一颗落下一颗苹果,一头奶牛想要获取最多的苹果,但是它能够在树间转移的次数为 W 且奶牛一开始是在第一颗树下,请编程算出最多的奶牛获得的苹果数 ...

  4. POJ - 2385 Apple Catching (dp)

    题意:有两棵树,标号为1和2,在Tmin内,每分钟都会有一个苹果从其中一棵树上落下,问最多移动M次的情况下(该人可瞬间移动),最多能吃到多少苹果.假设该人一开始在标号为1的树下. 分析: 1.dp[x ...

  5. 【POJ】2385 Apple Catching(dp)

    Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13447   Accepted: 6549 D ...

  6. poj 2385 Apple Catching(dp)

    Description It and ) in his field, each full of apples. Bessie cannot reach the apples when they are ...

  7. poj 2385 Apple Catching(记录结果再利用的动态规划)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题意: 有两颗苹果树,在每一时刻只有其中一棵苹果树会掉苹果,而Bessie可以在很短的时 ...

  8. POJ 2385 Apple Catching(01背包)

    01背包的基础上增加一个维度表示当前在的树的哪一边. #include<cstdio> #include<iostream> #include<string> #i ...

  9. POJ 2385 Apple Catching

    比起之前一直在刷的背包题,这道题可以算是最纯粹的dp了,写下简单题解. 题意是说cows在1树和2树下来回移动取苹果,有移动次数限制,问最后能拿到的最多苹果数,含有最优子结构性质,大致的状态转移也不难 ...

  10. 动态规划:POJ No 2385 Apple Catching

    #include <iostream> #include <cstdio> #include <algorithm> #include <cstring> ...

随机推荐

  1. django信号中的条件判断不符合时如何提示错误并返回

    在Django中,如果你在信号(Signal)处理函数中需要进行条件判断,如果条件不符合,你可以触发一个异常,并在视图或其他地方捕获这个异常,然后返回相应的错误提示. 以下是一个简单的例子,演示如何在 ...

  2. [oeasy]python0036_牛说_cowsay_小动物说话_asciiart_figlet_lolcat_管道(祝大家新年快乐~)

    ​ 牛说(cowsay) 回忆上次内容 上次我们研究了shell脚本的编程 并且在shell中实现了 循环语句 延迟命令 清屏命令 python命令 figlet命令 ​ 编辑 还能整点什么呢? 还想 ...

  3. vue项目坑记录:vue项目运行卡在百分之几几几

    今天晚上打着游戏,同事突然叫我拉项目下来运行,我打完就去拉代码了,结果vue项目运行卡在66%不动了,我也是百度一下分享别人怎么解决的文章给他,继续我的游戏! 结果呢? 游戏结束后,我拉代码,还是这个 ...

  4. 假期小结2hadoop环境配置

     记录一下hadoop配置 安装Java Development Kit(JDK):Hadoop是用Java编写的,所以首先需要安装JDK.可以从Oracle下载JDK,并按照安装说明进行安装. 下载 ...

  5. docker 概念,安装,启动,运行

    docker概念,安装,启动,运行模式 docker的概念 镜像(image) 模板,可以通过模板来创建容器服务,tomcat镜像===>run==>tomacat01容器(提供服务),通 ...

  6. 【ServerSentEvents】服务端单向消息推送

    依赖库: Springboot 不需要而外支持,WebMVC组件自带的类库 浏览器要检查内核是否支持EventSource库 Springboot搭建SSE服务: 这里封装一个服务Bean, 用于管理 ...

  7. 【Java-GUI】04 菜单

    --1.菜单组件 相关对象: MenuBar 菜单条 Menu 菜单容器 PopupMenu 上下文菜单(右键弹出菜单组件) MenuItem 菜单项 CheckboxMenuItem 复选框菜单项 ...

  8. 【转载】 深入理解TensorFlow中的tf.metrics算子

    原文地址: https://mp.weixin.qq.com/s/8I5Nvw4t2jT1NR9vIYT5XA ============================================ ...

  9. Ubuntu18.04动态桌面壁纸variety的安装

    Ubuntu18.04桌面系统,安装动态更换桌面壁纸的应用,即安装软件 variety. variety 的安装: sudo apt install variety 安装好以后就会自动启动. 我们可以 ...

  10. golang 指定权限是 0o755 而不是 0755

    在Go语言中,当指定文件权限时,使用前缀 0o 来明确表示八进制数是一种推荐的做法. 这是因为在Go语言中,八进制字面量必须以 0o 或 0O 开头,后跟八进制数字(0-7). 这种语法是从 Go 1 ...