【题解】CatOJ C0458C 滑动窗口定期重构
标题 trick 的名字我也不知道是什么,就这样吧。
首先有显然的 dp 式子:\(f(i)=\min \{f(j) \times \max\{a_{j+1},\dots,a_i\}\}\)。考虑怎么去优化它。
有显然的 \(\mathcal O(n\log n)\):考虑线段树优化 dp。用增的单调栈维护 \(a\),若每次弹出顶部一个下标 \(p\),则 \([p+1,i]\) 的 \(\max\) 都被推平成 \(a_i\),栈维护一下 \(\max\) 连续段,于是问题变成区间加。分析一下连续段个数是 \(\mathcal O(n)\) 的。
Code(这份代码 5e5 的包 WA 了,但大致思路可以参考一下)
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pb emplace_back
#define rep(_, __, ___) for (int _ = (__); _ <= (___); _++)
#define per(_, __, ___) for (int _ = (__); _ >= (___); _--)
// #define int long long
using ll = long long; using pii = pair<int, int>;
inline int read() {
char ch = getchar(); int s = 0, f = 1;
while (!isdigit(ch)) f = (ch == '-' ? -1 : 1), ch = getchar();
while (isdigit(ch)) s = (s << 1) + (s << 3) + (ch ^ 48), ch = getchar();
return s * f;
}
constexpr int N = 5e5 + 5, mod = 1e9 + 7;
int n, k, a[N], s1[N], t1, t2; ll pw[N]; tuple<int, int, int> s2[N];
#define ls id << 1
#define rs id << 1 | 1
ll mn[N << 2], tag[N << 2];
inline void maketag(int id, int x) {
tag[id] += x, mn[id] += x;
}
void upd(int a, int b, int x, int id = 1, int l = 1, int r = n) {
if (a <= l && b >= r) return maketag(id, x);
int mid = (l + r) >> 1; maketag(ls, tag[id]), maketag(rs, tag[id]), tag[id] = 0;
if (a <= mid) upd(a, b, x, ls, l, mid);
if (b > mid) upd(a, b, x, rs, mid + 1, r);
mn[id] = min(mn[ls], mn[rs]);
}
ll qry(int a, int b, int id = 1, int l = 1, int r = n) {
if (a <= l && b >= r) return mn[id];
int mid = (l + r) >> 1; ll res = 1e18; maketag(ls, tag[id]), maketag(rs, tag[id]), tag[id] = 0;
if (a <= mid) res = min(res, qry(a, b, ls, l, mid));
if (b > mid) res = min(res, qry(a, b, rs, mid + 1, r));
return res;
}
signed main() {
// freopen("knight.in", "r", stdin);
// freopen("knight.out", "w", stdout);
ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
n = read(), k = read();
pw[0] = 1; rep (i, 1, n) a[i] = read(), pw[i] = pw[i - 1] * 23 % mod;
ll ans = 0, dp;
rep (i, 1, n) {
while (t1 && a[s1[t1]] < a[i]) t1--;
int x = s1[t1] + 1; s2[t2 + 1] = {get<1>(s2[t2]) + 1, i, 0}, t2++;
while (t2 && get<0>(s2[t2]) >= x) {
upd(get<0>(s2[t2]), get<1>(s2[t2]), a[i] - get<2>(s2[t2]));
t2--;
}
s2[++t2] = {x, i, a[i]}, s1[++t1] = i; dp = qry(max(i - k + 1, 1), i);
if (i < n) upd(i + 1, i + 1, dp);
ans += pw[n - i] * (dp % mod) % mod;
}
cout << ans % mod;
return 0;
}
/*
3 4 4 8 10 12
*/
进阶一下,上面的线段树优化 dp 可以每次修改的都是一个后缀,可以用可删堆维护 \(\min\),定期弹出过期元素即可。
于是我们得到了乱搞做法:把上面的可删堆换成压位 Trie,时间复杂度是 \(\mathcal O(n\log V/\log w)\) 的。
观察复杂度瓶颈在于可删堆的求 \(\min\)。注意到可删堆内的元素其实是在一段窗口里,所以有人类智慧的思考:考虑基于一个点 \(p\),每次重构时预处理出它到两边的前缀 / 后缀 \(\min\),每次查询的时候是可以将两段拼起来。当窗口内不包含 \(p\) 时,就取 \(p\) 为当前窗口中点重构即可。
分析一下复杂度:如果右端点不扩,势能是不断减小的,即 \(\mathcal O(len+\dfrac{len}{2}+\dfrac{len}{4}+...)=\mathcal O(len)\),由于右端点往右扩是均摊 \(\mathcal O(n)\) 的,所以复杂度即为 \(\mathcal O(\sum len)=\mathcal O(n)\)。
Code
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pb emplace_back
#define rep(_, __, ___) for (int _ = (__); _ <= (___); _++)
#define per(_, __, ___) for (int _ = (__); _ >= (___); _--)
#define int long long
using ll = long long; using pii = pair<int, int>;
inline int read() {
char ch = getchar(); int s = 0, f = 1;
while (!isdigit(ch)) f = (ch == '-' ? -1 : 1), ch = getchar();
while (isdigit(ch)) s = (s << 1) + (s << 3) + (ch ^ 48), ch = getchar();
return s * f;
}
constexpr int N = 1e7 + 5, mod = 1e9 + 7;
int n, k, st = 1, ed, mid = 1, dp[N], mn[N], pw[N];
struct node {signed l, r; int tag;} s[N];
inline int get(int i) {
return s[i].tag + dp[s[i].l - 1];
}
inline void rebuild() {
if (st > ed) return (void)(mid = st); mid = (st + ed) >> 1;
rep (i, st, ed) mn[i] = get(i);
per (i, mid - 1, st) mn[i] = min(mn[i], mn[i + 1]);
rep (i, mid + 2, ed) mn[i] = min(mn[i], mn[i - 1]);
}
signed main() {
// freopen("knight.in", "r", stdin);
// freopen("knight.out", "w", stdout);
ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
n = read(), k = read(); int ans = 0;
pw[0] = 1; rep (i, 1, n) pw[i] = pw[i - 1] * 23 % mod;
rep (i, 1, n) {
int x = read();
// cerr << s[st].l << '*' << s[st].r << endl;
while (st <= ed && s[st].l < i - k + 1) {
if (s[st].r < i - k + 1) {
if (++st > mid) rebuild();
}
else {
s[st].l = i - k + 1; mn[st] = get(st);
if (st < mid) mn[st] = min(mn[st], mn[st + 1]);
}
}
// cerr << s[st].l << '$' << s[st].r << endl;
while (st <= ed && s[ed].tag <= x) if (--ed <= mid) rebuild();
// cerr << s[st].l << '&' << s[st].r << endl;
if (st > ed) s[++ed] = (node){max(1ll, i - k + 1), i, x};
else s[ed + 1] = (node){s[ed].r + 1, i, x}, ed++;
mn[ed] = get(ed); if (ed - 1 > mid) mn[ed] = min(mn[ed], mn[ed - 1]);
dp[i] = min(mn[ed], mn[st]); ans += pw[n - i] * (dp[i] % mod) % mod;
// cerr << i << ' ' << dp[i] << '\n';
}
cout << ans % mod;
return 0;
}
/*
3 4 4 8 10 12
*/
【题解】CatOJ C0458C 滑动窗口定期重构的更多相关文章
- LeetCode 周赛 342(2023/04/23)容斥原理、计数排序、滑动窗口、子数组 GCB
本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问. 大家好,我是小彭. 前天刚举办 2023 年力扣杯个人 SOLO 赛,昨天周赛就出了一场 Easy - Ea ...
- 单调队列优化&&P1886 滑动窗口题解
单调队列: 顾名思义,就是队列中元素是单调的(单增或者单减). 在某些问题中能够优化复杂度. 在dp问题中,有一个专题动态规划的单调队列优化,以后会更新(现在还是太菜了不会). 在你看到类似于滑动定长 ...
- luogu题解 UVA11536 【Smallest Sub-Array】最短set区间&滑动窗口
题目链接: https://www.luogu.org/problemnew/show/UVA11536 题目大意: 给定一个\(N,M,K\),构造这样的数列: \(x[1]=1,x[2]=2,x[ ...
- LeetCoded第239题题解--滑动窗口最大值
滑动窗口最大值 给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧.你只可以看到在滑动窗口内的 k 个数字.滑动窗口每次只向右移动一位. 返回滑动窗口中的最大值. 进 ...
- TCP协议的滑动窗口协议以及流量控制
参考资料 http://blog.chinaunix.net/uid-26275986-id-4109679.html http://network.51cto.com/art/201501/4640 ...
- LeetCode编程训练 - 滑动窗口(Sliding Window)
滑动窗口基础 滑动窗口常用来解决求字符串子串问题,借助map和计数器,其能在O(n)时间复杂度求子串问题.滑动窗口和双指针(Two pointers)有些类似,可以理解为往同一个方向走的双指针.常用滑 ...
- POJ 2823 滑动窗口 单调队列
https://vjudge.net/problem/POJ-2823 中文:https://loj.ac/problem/10175 题目 给一个长度为 $N$ 的数组,一个长为 $K$ 的滑动窗体 ...
- Storm 实现滑动窗口计数和TopN排序
计算top N words的topology, 用于比如trending topics or trending images on Twitter. 实现了滑动窗口计数和TopN排序, 比较有意思, ...
- 算法与数据结构基础 - 滑动窗口(Sliding Window)
滑动窗口基础 滑动窗口常用来解决求字符串子串问题,借助map和计数器,其能在O(n)时间复杂度求子串问题.滑动窗口和双指针(Two pointers)有些类似,可以理解为往同一个方向走的双指针.常用滑 ...
- PAT(B) 1030 完美数列 - C语言 - 滑动窗口 & 双指针
题目链接:1030 完美数列 (25 point(s)) 给定一个正整数数列,和正整数 \(p\),设这个数列中的最大值是 \(M\),最小值是 \(m\),如果 \(M≤mp\),则称这个数列是完美 ...
随机推荐
- 聊聊 dotnet 7 对 bool 与字符串互转的底层性能优化
本文也叫 跟着 Stephen Toub 大佬学性能优化系列.大家都知道在 .NET 7 有众多的性能优化,其中就包括了对布尔和字符串互转的性能优化.在对布尔和字符串的转换的性能优化上,有着非常巧妙的 ...
- dotnet 对指针转换为结构体多个不同方法的性能分析
在 dotnet 里面,拿到一个指针,可以有多个不同的方法转换为结构体,本文将来告诉大家这几个方法的性能的差别 特别感谢性能优化狂魔 Stephen Toub 大佬的指导 在 WPF 框架开发中,有小 ...
- 超好用的 Redis GUI 工具,你值得拥有
超好用的 Redis GUI 工具,你值得拥有 提供原生的性能,并且比使用 Electron 等 Web 技术开发的同等应用程序消耗的资源少得多. 下载地址:http://www.redisant.c ...
- games101-3 BRDF101
BRDF101 概述 本文基于知乎Maple对brdf的文章,在此基础又收集了一些其它来源的关于brdf的文章,希望能够完全理解记忆相关知识 关于Jakub Boksansky的文章,看的过程中又去搜 ...
- STLINK/V2下载器接线方法
一.ST-LINK ST-LINK产品如下图所示: ST-LINK接口定义如下图所示 ST-LINK与stm32接线 使用SW接法只需要四根线: STM32 ST-LINK VCC(3.3V) TVC ...
- aspnetcore项目中kafka组件封装
前段时间在项目中把用到kafka组件完全剥离开出来,项目需要可以直接集成进去.源代码如下: liuzhixin405/My.Project (github.com) 组件结构如下,代码太多不一一列举, ...
- sh角本操作数据库
#!/bin/bash HOST="127.0.0.1" PORT="3306" USERNAME="root" PASSWORD=&quo ...
- css样式相关的惊艳的属性
CSS gap 简写属性用于设置行与列之间的间隙(网格间距). 规范的早期版本将该属性命名为 grid-gap,且为了保持与旧网站的兼容性,浏览器仍然会接受 grid-gap 作为 gap 的别名. ...
- 线程安全使用 HashMap 的四种技巧
这篇文章,我们聊聊线程安全使用 HashMap 的四种技巧. 1方法内部:每个线程使用单独的 HashMap 如下图,tomcat 接收到到请求后,依次调用控制器 Controller.服务层 Ser ...
- 『手撕Vue-CLI』处理不同指令
前言 在上一篇『手撕Vue-CLI』添加自定义指令中,已经实现了自定义指令的添加,但是指令还是比较简单的,只是简单的打印一句话,那么在实际运用场景中,可能会有更多的需求,比如可能需要在指令中传递参数, ...