如何在 Pandas 中进行文本的匹配和替换操作?

在 Pandas 中,使用 str 属性与正则表达式可以进行文本的匹配和替换操作。下面是一些常用的方法:

  • str.contains():判断字符串中是否包含指定的文本。
import pandas as pd

df = pd.DataFrame({'text': ['apple', 'banana', 'orange']})
df['contains_a'] = df['text'].str.contains('a')
print(df)
  • str.replace():替换字符串中指定的文本。
df = pd.DataFrame({'text': ['apple', 'banana', 'orange']})
df['new_text'] = df['text'].str.replace('a', 'e')
print(df)
  • str.extract():从字符串中提取满足指定正则表达式的部分。
df = pd.DataFrame({'text': ['Name: John', 'Name: Michael', 'Name: David']})
df['name'] = df['text'].str.extract('Name: (.*)')
print(df)

如何在 Pandas 中进行时间序列数据的重采样和滚动统计?

时间序列数据重采样是指将数据从一个时间频率转换为另一个时间频率的过程,例如将每日数据转换为每周数据。滚动统计是指计算一段时间内的统计指标,例如计算每日收盘价的移动平均值。

在 Pandas 中,可以使用 resample() 函数进行时间序列数据的重采样,使用 rolling() 函数进行滚动统计。具体操作如下:

  1. 读取时间序列数据并将日期列设置为索引:
  2. 对数据进行重采样:
  3. 对数据进行滚动统计:
import pandas as pd
df = pd.read_csv('data.csv', index_col='date', parse_dates=True)
# 将数据从每日转换为每周
df_weekly = df.resample('W').mean() # 将数据从每日转换为每月
df_monthly = df.resample('M').mean()
# 计算收盘价的滚动平均值
df['rolling_mean'] = df['close'].rolling(window=10).mean() # 计算收盘价的滚动标准差
df['rolling_std'] = df['close'].rolling(window=10).std()

如何在 Pandas 中对数据进行随机抽样和生成随机数?

在 Pandas 中对数据进行随机抽样,可以使用 DataFrame 或 Series 对象的 sample() 方法,该方法可以设置抽样的数量、比例、是否有放回等参数,示例代码如下:

import pandas as pd

# 创建一个 DataFrame 对象
df = pd.DataFrame({'A': [1,2,3,4,5], 'B': ['a','b','c','d','e']}) # 对 DataFrame 进行随机抽样
sample_df = df.sample(n=3, replace=True) # 抽样数量为 3,有放回
print(sample_df)

生成随机数,可以使用 numpy 库中的 random 模块,示例代码如下:

import numpy as np

# 生成一个 [0, 1) 之间的随机数
rand_num = np.random.rand()
print(rand_num)

除了生成单个随机数外,也可以生成多个随机数,例如:

# 生成一个大小为 3x2 的随机矩阵
rand_matrix = np.random.rand(3, 2)
print(rand_matrix)

如何在 Pandas 中使用进阶的 DataFrame 和 Series 的操作方法,例如 stack、unstack、pivot、melt 等?

在 Pandas 中,可以通过以下方法使用进阶的 DataFrame 和 Series 操作方法:

  • stack:将列数据压缩为行数据,使得 DataFrame 的行数增加,列数减少。
  • unstack:将行数据展开成列数据,使得 DataFrame 的列数增加,行数减少。
  • pivot:将一列作为横轴,一列作为纵轴,另一列作为对应值,构造新的 DataFrame。
  • melt:将多列合并成一列。
import pandas as pd

# 构造数据
df = pd.DataFrame({
'name': ['Alice', 'Bob'],
'salary2019': [5000, 6000],
'salary2020': [5500, 6800]
})
print(df)
# 输出:
# name salary2019 salary2020
# 0 Alice 5000 5500
# 1 Bob 6000 6800 # stack
stacked_df = df.set_index('name').stack().reset_index()
print(stacked_df)
# 输出:
# name level_1 0
# 0 Alice salary2019 5000
# 1 Alice salary2020 5500
# 2 Bob salary2019 6000
# 3 Bob salary2020 6800 # unstack
unstacked_df = stacked_df.set_index(['name', 'level_1']).unstack()
print(unstacked_df)
# 输出:
# 0
# level_1 salary2019 salary2020
# name
# Alice 5000 5500
# Bob 6000 6800
import pandas as pd

# 构造数据
df = pd.DataFrame({
'name': ['Alice', 'Bob', 'Charlie'],
'year': [2019, 2019, 2020],
'salary': [5000, 6000, 7000]
})
print(df)
# 输出:
# name year salary
# 0 Alice 2019 5000
# 1 Bob 2019 6000
# 2 Charlie 2020 7000 # pivot
pivot_df = df.pivot(index='name', columns='year', values='salary')
print(pivot_df)
# 输出:
# year 2019 2020
# name
# Alice 5000 NaN
# Bob 6000 NaN
# Charlie NaN 7000
import pandas as pd

# 构造数据
df = pd.DataFrame({
'name': ['Alice', 'Bob', 'Charlie'],
'salary2019': [5000, 6000, 7000],
'salary2020': [5500, 6800, 7500]
})
print(df)
# 输出:
# name salary2019 salary2020
# 0 Alice 5000 5500
# 1 Bob 6000 6800
# 2 Charlie 7000 7500 # melt
melted_df = df.melt(id_vars=['name'], value_vars=['salary2019', 'salary2020'], var_name='year', value_name='salary')
print(melted_df)
# 输出:
# name year salary
# 0 Alice salary2019 5000
# 1 Bob salary2019 6000
# 2 Charlie salary2019 7000
# 3 Alice salary2020 5500
# 4 Bob salary2020 6800
# 5 Charlie salary2020 7500

如何在 Pandas 中使用 mask 和 where 函数对数据进行条件赋值操作?

在 Pandas 中,可以使用 mask 和 where 函数对数据进行条件赋值操作。

  • mask:根据条件,对符合条件的元素进行替换
  • where:根据条件,对不符合条件的元素进行替换

以下是对 Pandas 中的 DataFrame 进行条件赋值的示例代码:

import pandas as pd

# 创建 DataFrame
df = pd.DataFrame({'A': [-1, 2, 3, -4], 'B': [5, 6, -7, 8]}) # mask:将 df 中小于 0 的元素替换为 0
df_mask = df.mask(df < 0, 0)
print(df_mask) # where:将 df 中大于 0 的元素替换为 0
df_where = df.where(df < 0, 0)
print(df_where)

可以看到,使用 mask 函数将 df 中小于 0 的元素替换为 0,使用 where 函数将 df 中大于 0 的元素替换为 0。

如何在 Pandas 中使用 rolling 函数对数据进行滑动窗口统计操作?

  1. 将数据转换为 Pandas 的 Series 或 DataFrame 格式。
  2. 调用 rolling 函数,并设置窗口大小和统计函数。
  3. 对返回的对象进行操作,如筛选或绘图。

下面是一个简单的示例,演示如何使用 rolling 函数对数据进行滑动窗口统计操作:

import pandas as pd

# 创建数据
data = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) # 使用 rolling 函数进行统计
result = data.rolling(window=3).sum() # 输出结果
print(result)
0     NaN
1 NaN
2 3.0
3 6.0
4 9.0
5 12.0
6 15.0
7 18.0
8 21.0
9 24.0
dtype: float64

如何在 Pandas 中进行数据的合并去重和拼接操作?

在 Pandas 中,数据的合并、去重和拼接操作可以通过以下几个方法实现:

  1. pd.concat():将多个数据表按行或列拼接在一起,并且可以指定数据表之间的连接方式(inner或outer)和连接轴(axis=0或1)。

  2. pd.merge():用于合并两个数据表,其中一个数据表作为基础表,另一个数据表作为待合并的表,可以指定基础表和待合并表中的共同列来进行合并,并且可以指定连接方式(inner、left、right或outer)。

  3. df.drop_duplicates():用于去除数据表中的重复行,可以根据指定的列名来进行去重操作。

# 创建示例数据表
import numpy as np
import pandas as pd df1 = pd.DataFrame({'A': ['a', 'b', 'c', 'd'],
'B': [1, 2, 3, 4],
'C': [np.nan, 2, 3, 4]})
df2 = pd.DataFrame({'A': ['e', 'b', 'f', 'g'],
'B': [5, 6, 7, 8],
'C': [1, 2, np.nan, 4]}) # pd.concat()方法进行拼接操作
df_concat = pd.concat([df1, df2], axis=0, join='outer') # pd.merge()方法进行合并操作
df_merge = pd.merge(df1, df2, on='A', how='inner') # df.drop_duplicates()方法进行去重操作
df_drop_dup = df_concat.drop_duplicates(['A'], keep='last')

如何在 Pandas 中使用 interpolate 函数对数据进行插值操作?

Pandas 中 interpolate 函数可以对缺失值进行插值操作。以下是使用 interpolate 函数的示例代码:

import pandas as pd

# 创建一个包含缺失值的 Series
s = pd.Series([1, 2, 3, np.nan, 5, np.nan, 7]) # 使用线性插值对缺失值进行填充
s_interpolated = s.interpolate() print(s_interpolated)
0    1.000000
1 2.000000
2 3.000000
3 4.000000
4 5.000000
5 6.000000
6 7.000000
dtype: float64

该示例代码中,使用了默认的线性插值方式对缺失值进行填充。可以通过参数设置来改变插值方式,比如使用多项式插值或者样条插值等。使用 interpolate 函数的注意点是,待插值数据必须是单调的,否则插值结果可能不准确。

如何在 Pandas 中进行时间序列数据的处理和分析?

Pandas 中有两种处理时间序列数据的类型:Timestamp 和 DatetimeIndex。Timestamp 是 Pandas 中表示单个时间点的数据类型,而 DatetimeIndex 是 Pandas 中表示一个时间序列的数据类型。

以下是 Pandas 中处理时间序列数据的常用方法:

  • 创建时间序列

可以使用 Pandas 中的 to_datetime() 方法将字符串转换为 Timestamp 对象或 DatetimeIndex 对象。

import pandas as pd

# 将字符串转换为 Timestamp 对象
timestamp = pd.to_datetime('2021-01-01')
print(timestamp) # 将字符串列表转换为 DatetimeIndex 对象
date_list = ['2021-01-01', '2021-01-02', '2021-01-03']
date_index = pd.DatetimeIndex(date_list)
print(date_index)
  • 时间序列切片

可以使用 loc 或 iloc 方法对时间序列进行切片。

import pandas as pd

date_index = pd.date_range(start='2021-01-01', end='2021-01-10')
df = pd.DataFrame({'value': range(10)}, index=date_index) # 使用 loc 方法对时间序列进行切片,取 2021-01-01 至 2021-01-03 的数据
print(df.loc['2021-01-01':'2021-01-03']) # 使用 iloc 方法对时间序列进行切片,取第一行至第三行的数据
print(df.iloc[0:3])
  • 时间序列的聚合

可以使用 resample() 方法将时间序列按照一定的时间周期进行聚合。

import pandas as pd

date_index = pd.date_range(start='2021-01-01', end='2021-01-10')
df = pd.DataFrame({'value': range(10)}, index=date_index) # 将时间序列按照每天进行聚合,并计算平均值
daily_mean = df.resample('D').mean()
print(daily_mean) # 将时间序列按照每两天进行聚合,并计算平均值
two_day_mean = df.resample('2D').mean()
print(two_day_mean)
  • 移动窗口分析

可以使用 rolling() 方法对时间序列进行移动窗口分析。

import pandas as pd

date_index = pd.date_range(start='2021-01-01', end='2021-01-10')
df = pd.DataFrame({'value': range(10)}, index=date_index) # 对时间序列进行 3 天的移动窗口计算
rolling_mean = df.rolling(window=3).mean()
print(rolling_mean)
  • 时间序列可视化

可以使用 Pandas 中的 plot() 方法对时间序列进行可视化。

import pandas as pd
import matplotlib.pyplot as plt date_index = pd.date_range(start='2021-01-01', end='2021-01-10')
df = pd.DataFrame({'value': range(10)}, index=date_index) # 对时间序列进行可视化
df.plot()
plt.show()

如何在 Pandas 中进行数据的机器学习和深度学习处理,例如特征工程、数据预处理、模型构建等?

在 Pandas 中进行数据的机器学习和深度学习处理,需要进行以下步骤:

  1. 数据预处理:包括数据清洗、缺失值填充、数据转换等。

  2. 特征工程:包括特征选择、特征提取、特征变换等。

  3. 模型构建:选择合适的机器学习或深度学习模型,并进行模型训练和参数调优。

  4. 模型评估:使用交叉验证或测试集进行模型评估,并选择最优模型。

下面是在 Pandas 中进行机器学习和深度学习处理的一些具体步骤:

  1. 数据预处理

数据预处理包括数据清洗、缺失值填充、数据转换等。在 Pandas 中可以使用 DataFrame 提供的方法来实现。

数据清洗:

  • 删除重复数据:使用 drop_duplicates() 方法。

  • 删除异常值:可以使用统计方法,例如用中位数或均值替换异常值。

缺失值填充:

  • 使用平均值、中位数或众数填充:使用 fillna() 方法。

  • 使用插值法填充:使用 interpolate() 方法。

数据转换:

  • 离散化:使用 cut() 方法。

  • 连续化:使用 qcut() 方法。

  1. 特征工程

特征工程包括特征选择、特征提取、特征变换等。使用 Pandas 可以方便地进行特征工程。

特征选择:

  • 相关系数分析:使用 corr() 方法。

  • 方差分析:使用 variance() 方法。

特征提取:

  • 文本特征提取:使用 countvectorizer() 方法。

  • 图像特征提取:使用 PIL 库或 OpenCV 工具包。

特征变换:

  • 标准化:使用 sklearn 的 StandardScaler。

  • 归一化:使用 sklearn 的 MinMaxScaler。

  1. 模型构建

在 Pandas 中可以使用 sklearn 包提供的机器学习和深度学习算法进行模型构建。

  • 机器学习:使用 Random Forest、KNN、SVM、LR 等算法。

  • 深度学习:使用 TensorFlow、Keras、PyTorch、MXNet 等框架。

  1. 模型评估

使用交叉验证或测试集进行模型评估,并选择最优模型。

  • 交叉验证:使用 cross_val_score() 方法。

  • 测试集评估:使用 predict() 方法和 confusion_matrix() 方法。

综上所述,在 Pandas 中进行数据的机器学习和深度学习处理需要进行数据预处理、特征工程、模型构建和模型评估等步骤。在每一步骤中,Pandas 提供了一些方法方便进行数据分析和数据处理。

【技术积累】Python中的Pandas库【二】的更多相关文章

  1. Python之使用Pandas库实现MySQL数据库的读写

      本次分享将介绍如何在Python中使用Pandas库实现MySQL数据库的读写.首先我们需要了解点ORM方面的知识. ORM技术   对象关系映射技术,即ORM(Object-Relational ...

  2. 沉淀,再出发:python中的pandas包

    沉淀,再出发:python中的pandas包 一.前言 python中有很多的包,正是因为这些包工具才使得python能够如此强大,无论是在数据处理还是在web开发,python都发挥着重要的作用,下 ...

  3. python中的pandas的两种基本使用

    python中的pandas的两种基本使用2018年05月19日 16:03:36 木子柒努力成长 阅读数:480 一.pandas简介 pandas:panel data analysis(面板数据 ...

  4. 【归纳】正则表达式及Python中的正则库

    正则表达式 正则表达式30分钟入门教程 runoob正则式教程 正则表达式练习题集(附答案) 元字符\b代表单词的分界处,在英文中指空格,标点符号或换行 例子:\bhi\b可以用来匹配hi这个单词,且 ...

  5. 利用Python中的mock库对Python代码进行模拟测试

    这篇文章主要介绍了利用Python中的mock库对Python代码进行模拟测试,mock库自从Python3.3依赖成为了Python的内置库,本文也等于介绍了该库的用法,需要的朋友可以参考下     ...

  6. python中的类(二)

    python中的类(二) 六.类的成员 字段:普通字段,静态字段 eg: class Province(): country=’中国’ #静态字段,保存在类中,执行时可以通过类或对象访问 def __ ...

  7. Python中使用第三方库xlrd来写入Excel文件示例

    Python中使用第三方库xlrd来写入Excel文件示例 这一篇文章就来介绍下,如何来写Excel,写Excel我们需要使用第三方库xlwt,和xlrd一样,xlrd表示read xls,xlwt表 ...

  8. 一个完整的机器学习项目在Python中的演练(二)

    大家往往会选择一本数据科学相关书籍或者完成一门在线课程来学习和掌握机器学习.但是,实际情况往往是,学完之后反而并不清楚这些技术怎样才能被用在实际的项目流程中.就像你的脑海中已经有了一块块"拼 ...

  9. Python中的Pandas模块

    目录 Pandas Series 序列的创建 序列的读取 DataFrame DataFrame的创建 DataFrame数据的读取 Panel Panel的创建 Pandas Pandas ( Py ...

  10. Python 基础教程 —— Pandas 库常用方法实例说明

    目录 1. 常用方法 pandas.Series 2. pandas.DataFrame ([data],[index])   根据行建立数据 3. pandas.DataFrame ({dic})  ...

随机推荐

  1. SpringBoot——自定义start

    更多内容,前往 IT-BLOG 一.Mybatis 实现 start 的原理 首先在写一个自定义的 start 之前,我们先参考下 Mybatis 是如何整合 SpringBoot:mybatis-s ...

  2. 全网最详细中英文ChatGPT-GPT-4示例文档-从0到1快速入门计算时间复杂度应用——官网推荐的48种最佳应用场景(附python/node.js/curl命令源代码,小白也能学)

    目录 Introduce 简介 setting 设置 Prompt 提示 Sample response 回复样本 API request 接口请求 python接口请求示例 node.js接口请求示 ...

  3. 【LeetCode动态规划#05】背包问题的理论分析(基于代码随想录的个人理解,多图)

    背包问题 问题描述 背包问题是一系列问题的统称,具体包括:01背包.完全背包.多重背包.分组背包等(仅需掌握前两种,后面的为竞赛级题目) 下面来研究01背包 实际上即使是最经典的01背包,也不会直接出 ...

  4. vue-router面试题

    1.vue-router怎么重定向页面? 答:路由中配置redirect属性 2.vue-router怎么配置404页面? 答:path: '*' 是对的 但是应该放在最后一个 3.切换路由时,需要保 ...

  5. VBA GET POST HTTP VBA网络爬虫 最新Excel自动获取股票信息源码 EXCEL自动获取网络数据 最新VBA自动抓取股票数据源码

    最新Excel自动获取股票信息源码 EXCEL自动获取网络数据 最新VBA自动抓取股票数据源码 通过接口获取股票数据内容的主要优点包括以下几点: 实时性高:通过访问股票数据接口,可以实时获取到股票的实 ...

  6. docker方式实现postgres数据持久化离线安装

    保存镜像 root@hello:~# docker pull postgres Using default tag: latest latest: Pulling from library/postg ...

  7. python医学病理图片svs装换

    SVS文件是什么? 最开始拿到SVS文件一脸懵逼的,这货长这样(在windows下可以用Aperio ImageScope这个开源软件打开): 我现在接触的这种图片的大小一般在60M-1.5G之间,可 ...

  8. 腾讯出品小程序自动化测试框架【Minium】系列(七)测试框架的设计和开发

    前言 整个框架的开发及调通是在3月27日晚上22点完成,如下: 这篇文章真的是拖了太久了,久到我居然把代码部分完成后,彻底给忘了,这记性,真的是年纪大了! 框架的设计开发 1.框架搭建设计要素 日志& ...

  9. DG:模拟failover故障与恢复

    问题描述:情形是当主库真正出现异常之后,才会执行的操作,那么我们执行过failover 之后,如何在重新构建DG,这里我们利用flashback database来重构.模拟前主库要开启闪回区,否则要 ...

  10. SpringBoot自动装配原理剖析(自己理解,有错请指出)

    注解 主类 @SpringBootApplication @EnableAutoConfiguration @Import({AutoConfigurationImportSelector.class ...