代码随想录算法训练营

代码随想录算法训练营Day40 动态规划|01背包问题,你该了解这些! 01背包问题,你该了解这些!滚动数组 416. 分割等和子集

01背包问题,你该了解这些!



完全背包又是也是01背包稍作变化而来,即:完全背包的物品数量是无限的。

所以背包问题的理论基础重中之重是01背包,一定要理解透!

leetcode上没有纯01背包的问题,都是01背包应用方面的题目,也就是需要转化为01背包问题。

01 背包

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。



其实是没有从底向上去思考,而是习惯性想到了背包,那么暴力的解法应该是怎么样的呢?

每一件物品其实只有两个状态,取或者不取,所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是$o(2^n)$,这里的n表示物品数量。

所以暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化!

举一个例子:

背包最大重量为4。

物品为:

重量 价值
物品0 1 15
物品1 3 20
物品2 4 30
问背包能背的物品最大价值是多少?
以下讲解和图示中出现的数字都是以这个例子为例。

二维dp数组01背包

依然动规五部曲分析一波。

  1. 确定dp数组以及下标的含义

    对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少

    只看这个二维数组的定义,会有点懵,看下面这个图:



    要时刻记着这个dp数组的含义,下面的一些步骤都围绕这dp数组的含义进行的,如果哪里看懵了,就来回顾一下i代表什么,j又代表什么。
  2. 确定递推公式

    再回顾一下dp[i][j]的含义:从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

    那么可以有两个方向推出来dp[i][j]
  • 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以被背包内的价值依然和前面相同。)
  • 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值

    所以递归公式: `dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])``;
  1. dp数组如何初始化

    关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱

    首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。如图:



    看其他情况。

    状态转移方程 dp[i][j] = max(dp[i - 1][j],dp[i - 1][j - weight[i]] + value[i]);可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。

    dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

    那么很明显当 j < weight[0]的时候,dp[0][j]应该是 0,因为背包容量比编号0的物品重量还小。

    j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。

    代码初始化如下:
for (int j = 0 ; j < weight[0]; j++) {  // 当然这一步,如果把dp数组预先初始化为0了,这一步就可以省略,但很多同学应该没有想清楚这一点。
dp[0][j] = 0;
}
// 正序遍历
for (int j = weight[0]; j <= bagweight; j++) {
dp[0][j] = value[0];
}

dp数组初始化情况如图所示:



dp[0][j] dp[i][0] 都已经初始化了,那么其他下标应该初始化多少呢?

其实从递归公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出dp[i][j] 是由左上方数值推导出来了,那么 其他下标初始为什么数值都可以,因为都会被覆盖。

初始-1,初始-2,初始100,都可以!

但只不过一开始就统一把dp数组统一初始为0,更方便一些。

// 初始化 dp
vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));
for (int j = weight[0]; j <= bagweight; j++) {
dp[0][j] = value[0];
}

费了这么大的功夫,才把如何初始化讲清楚,相信不少同学平时初始化dp数组是凭感觉来的,但有时候感觉是不靠谱的

4. 确定遍历顺序

在如下图中,可以看出,有两个遍历的维度:物品与背包重量



那么问题来了,先遍历 物品还是先遍历背包重量呢?

其实都可以!! 但是先遍历物品更好理解

那么我先给出先遍历物品,然后遍历背包重量的代码。

// weight数组的大小 就是物品个数
for(int i = 1; i < weight.size(); i++) { // 遍历物品
for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
if (j < weight[i]) dp[i][j] = dp[i - 1][j];
else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); }
}

先遍历背包,再遍历物品,也是可以的!(注意我这里使用的二维dp数组)

// weight数组的大小 就是物品个数
for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
for(int i = 1; i < weight.size(); i++) { // 遍历物品
if (j < weight[i]) dp[i][j] = dp[i - 1][j];
else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}

要理解递归的本质和递推的方向

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 递归公式中可以看出dp[i][j]是靠dp[i-1][j]dp[i - 1][j - weight[i]]推导出来的。

dp[i-1][j]dp[i - 1][j - weight[i]] 都在dp[i][j]的左上角方向(包括正上方向),那么先遍历物品,再遍历背包的过程如图所示:



再来看看先遍历背包,再遍历物品呢,如图:



可以看出,虽然两个for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角,根本不影响dp[i][j]公式的推导!

但先遍历物品再遍历背包这个顺序更好理解。

其实背包问题里,两个for循环的先后循序是非常有讲究的,理解遍历顺序其实比理解推导公式难多了

5. 举例推导dp数组

来看一下对应的dp数组的数值,如图:



最终结果就是`dp[2][4]``。

建议大家此时自己在纸上推导一遍,看看dp数组里每一个数值是不是这样的。

做动态规划的题目,最好的过程就是自己在纸上举一个例子把对应的dp数组的数值推导一下,然后在动手写代码!

void test_2_wei_bag_problem1() {
vector<int> weight = {1, 3, 4};
vector<int> value = {15, 20, 30};
int bagweight = 4; // 二维数组
vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0)); // 初始化
for (int j = weight[0]; j <= bagweight; j++) {
dp[0][j] = value[0];
} // weight数组的大小 就是物品个数
for(int i = 1; i < weight.size(); i++) { // 遍历物品
for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
if (j < weight[i]) dp[i][j] = dp[i - 1][j];
else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); }
} cout << dp[weight.size() - 1][bagweight] << endl;
} int main() {
test_2_wei_bag_problem1();
}

01背包问题,你该了解这些! 滚动数组

416. 分割等和子集

题目链接:416. 分割等和子集

给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

注意: 每个数组中的元素不会超过 100 数组的大小不会超过 200

示例 1:

  • 输入: [1, 5, 11, 5]
  • 输出: true
  • 解释: 数组可以分割成 [1, 5, 5] 和 [11].

总体思路

这道题目初步看,和如下两题几乎是一样的,大家可以用回溯法,解决如下两题

  • 698.划分为k个相等的子集
  • 473.火柴拼正方形

    这道题目是要找是否可以将这个数组分割成两个子集,使得两个子集的元素和相等

    背包问题,有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

    背包问题有多种背包方式,常见的有:01背包、完全背包、多重背包、分组背包和混合背包等等。

    要注意题目描述中商品是不是可以重复放入。

    即一个商品如果可以重复多次放入是完全背包,而只能放入一次是01背包,写法还是不一样的。

    要明确本题中我们要使用的是01背包,因为元素我们只能用一次。

    回归主题:首先,本题要求集合里能否出现总和为 sum / 2 的子集。

    那么来一一对应一下本题,看看背包问题如何来解决。

    只有确定了如下四点,才能把01背包问题套到本题上来。
  • 背包的体积为sum / 2
  • 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
  • 背包中每一个元素是不可重复放入。

    以上分析完,我们就可以套用01背包,来解决这个问题了。

    动规五部曲分析如下:
  1. 确定dp数组以及下标的含义

    01背包中,dp[j] 表示: 容量为j的背包,所背的物品价值最大可以为dp[j]。

    本题中每一个元素的数值既是重量,也是价值。

    套到本题,dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]

    那么如果背包容量为target, dp[target]就是装满 背包之后的重量,所以 当 dp[target] == target 的时候,背包就装满了。

    有录友可能想,那还有装不满的时候?

    拿输入数组 [1, 5, 11, 5],举例, dp[7] 只能等于 6,因为 只能放进 1 和 5。

    而dp[6] 就可以等于6了,放进1 和 5,那么dp[6] == 6,说明背包装满了。
  2. 确定递推公式

    01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

    本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。

    所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
  3. dp数组如何初始化

    在01背包,一维dp如何初始化,已经讲过,

    从dp[j]的定义来看,首先dp[0]一定是0。

    如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。

    这样才能让dp数组在递推的过程中取得最大的价值,而不是被初始值覆盖了

    本题题目中 只包含正整数的非空数组,所以非0下标的元素初始化为0就可以了。
// 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200
// 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了
vector<int> dp(10001, 0);
  1. 确定遍历顺序

    动态规划:关于01背包问题,你该了解这些!(滚动数组)中就已经说明:如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!

    代码如下:
// 开始 01背包
for(int i = 0; i < nums.size(); i++) {
for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历
dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
}
}
  1. 举例推导dp数组

    dp[j]的数值一定是小于等于j的。

    如果dp[j] == j 说明,集合中的子集总和正好可以凑成总和j,理解这一点很重要。

    用例1,输入[1,5,11,5] 为例,如图:



    最后dp[11] == 11,说明可以将这个数组分割成两个子集,使得两个子集的元素和相等。
class Solution {
public:
bool canPartition(vector<int>& nums) {
int sum = 0; // dp[i]中的i表示背包内总和
// 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200
// 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了
vector<int> dp(10001, 0);
for (int i = 0; i < nums.size(); i++) {
sum += nums[i];
}
// 也可以使用库函数一步求和
// int sum = accumulate(nums.begin(), nums.end(), 0);
if (sum % 2 == 1) return false;
int target = sum / 2; // 开始 01背包
for(int i = 0; i < nums.size(); i++) {
for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历
dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
}
}
// 集合中的元素正好可以凑成总和target
if (dp[target] == target) return true;
return false;
}
};

代码随想录算法训练营Day42 动态规划的更多相关文章

  1. 代码随想录算法训练营day01 | leetcode 704/27

    前言   考研结束半个月了,自己也简单休整了一波,估了一下分,应该能进复试,但还是感觉不够托底.不管怎样,要把代码能力和八股捡起来了,正好看到卡哥有这个算法训练营,遂果断参加,为机试和日后求职打下一个 ...

  2. 代码随想录算法训练营day02 | leetcode 977/209/59

    leetcode 977   分析1.0:   要求对平方后的int排序,而给定数组中元素可正可负,一开始有思维误区,觉得最小值一定在0左右徘徊,但数据可能并不包含0:遂继续思考,发现元素分布有三种情 ...

  3. 代码随想录算法训练营day22 | leetcode 235. 二叉搜索树的最近公共祖先 ● 701.二叉搜索树中的插入操作 ● 450.删除二叉搜索树中的节点

    LeetCode 235. 二叉搜索树的最近公共祖先 分析1.0  二叉搜索树根节点元素值大小介于子树之间,所以只要找到第一个介于他俩之间的节点就行 class Solution { public T ...

  4. 代码随想录算法训练营day17 | leetcode ● 110.平衡二叉树 ● 257. 二叉树的所有路径 ● 404.左叶子之和

    LeetCode 110.平衡二叉树 分析1.0 求左子树高度和右子树高度,若高度差>1,则返回false,所以我递归了两遍 class Solution { public boolean is ...

  5. 代码随想录算法训练营day13

    基础知识 二叉树基础知识 二叉树多考察完全二叉树.满二叉树,可以分为链式存储和数组存储,父子兄弟访问方式也有所不同,遍历也分为了前中后序遍历和层次遍历 Java定义 public class Tree ...

  6. 代码随想录算法训练营day12 | leetcode 239. 滑动窗口最大值 347.前 K 个高频元素

    基础知识 ArrayDeque deque = new ArrayDeque(); /* offerFirst(E e) 在数组前面添加元素,并返回是否添加成功 offerLast(E e) 在数组后 ...

  7. 代码随想录算法训练营day10 | leetcode 232.用栈实现队列 225. 用队列实现栈

    基础知识 使用ArrayDeque 实现栈和队列 stack push pop peek isEmpty() size() queue offer poll peek isEmpty() size() ...

  8. 代码随想录算法训练营day06 | leetcode 242、349 、202、1

    基础知识 哈希 常见的结构(不要忘记数组) 数组 set (集合) map(映射) 注意 哈希冲突 哈希函数 LeetCode 242 分析1.0 HashMap<Character, Inte ...

  9. 代码随想录算法训练营day03 | LeetCode 203/707/206

    基础知识 数据结构初始化 // 链表节点定义 public class ListNode { // 结点的值 int val; // 下一个结点 ListNode next; // 节点的构造函数(无 ...

  10. 代码随想录算法训练营day24 | leetcode 77. 组合

    基础知识 回溯法解决的问题都可以抽象为树形结构,集合的大小就构成了树的宽度,递归的深度构成的树的深度 void backtracking(参数) { if (终止条件) { 存放结果; return; ...

随机推荐

  1. 万字血书Vue—Vue语法

    模板语法 插值语法 Mustache插值采用{{ }},用于解析标签体内容,将Vue实例中的数据插入DOM中 <h1>Hello {{name}}</h1> 指令语法 指令用于 ...

  2. 30张图说清楚 TCP 协议

    大家好,我是风筝 前两天分享了 20张图说清楚 IP 协议 今天,继续来网管的自我修养之TCP协议,这可是除 IP 协议外另一个核心协议了. TCP 协议是网络传输中至关重要的一个协议,它位于传输层. ...

  3. Clion 连接 WSL 编译Unix环境

    Clion 连接 WSL 编译Unix环境 安装 WSL Ubuntu 18版本,创建后不要换源,upgrade后安装CMake.g++.gcc 安装 Clion,创建项目 进入setting 在 B ...

  4. 你不得不了解的CSS数据类型

    在我之前的开发中,CSS对于我来说,要用什么找什么,对CSS的了解并不算深入:在我刚开始深入学习CSS时,第一个遇到的就是CSS数据类型,我听说过JS.TS的数据类型,CSS怎么也有数据类型?但是随着 ...

  5. 技术分享:Proxy-Pool代理池搭建IP代理

    技术分享:Proxy-Pool代理池搭建IP代理 前言本章内容仅供参考,不涉及实际使用,主要使用Python环境和Redis数据库进行环境搭建,工具网盘存储如下,有问题可以私聊我.网址:https:/ ...

  6. 在k8s安装CICD-devtron

    在k8s安装CICD-devtron 先前条件 <kubernetes(k8s) 存储动态挂载>参考我之前的文档进行部署https://www.oiox.cn/index.php/arch ...

  7. 一道名题-(csp 儒略日)的心得与技巧

    引: 如果你见到一个oi对着 4713,1582 146097 2299160 颠颠地笑,不用怀疑,他是在做那道名题--<csp-s2020 T1 儒略日> 这道题,我做了三年,平均每年做 ...

  8. abc294G

    Upd G 看上好模板的样子, 果然是个模板题 好题 , 首先考虑这张图的 \(Euler \ Tour\), 简单点说, 就是dfs一遍, 把每个点入栈出栈顺序存起来, 举个例子· 2 1 2 2 ...

  9. SpringBoot整合RocketMQ,老鸟们都是这么玩的!

    今天我们来讨论如何在项目开发中优雅地使用RocketMQ.本文分为三部分,第一部分实现SpringBoot与RocketMQ的整合,第二部分解决在使用RocketMQ过程中可能遇到的一些问题并解决他们 ...

  10. 粘包,自定义协议,struct模块,粘包解决终极大招

    粘包: 1.粘包问题出现的原因: (udp不会出现粘包问题) 1.1.tcp是流式协议,数据像水流一样黏在一起,没有任何边界区分 1.2.收数据没收干净,有残留,就会下一次结果混淆在一起去(客户端接受 ...