本周完成了SVM课程笔记的阅读,包括SVM的基本原理以及SVM的优化过程,以及实现了SVM的两种损失函数(svm以及softmax)的线性分类器,以及学习了反向传播以及神经网络的初步。其中:svm在测试集上的准确率为37.4%,softmax损失函数在测试集上的准确率为35.6%,相较于KNN的27.4%提升约为36.5%及29.9%,提升幅度相对较大,此外SVM相较于KNN来说,时间性能更佳;之前学习的KNN算法属于直接将所有的训练图片数据化,根据图片的像素值进行判断,最简单的NN算法是用与待判断图片的差距最小(距离最近)的那张图片的类别当做此图片的类别,我们不难看到,1NN算法的正确性很差,相较于完全随机的10%的正确率,其正确率也不过只有20%左右,正确率低。我们用KNN算法则是用与其临近的K张图图片进行“投票”,得票最多的类别即为此图片的类别,可以看到,KNN算法有效的排除了某些噪声的干扰,但是主体的思路仍然是直接进行比较,此算法的缺点在于时间复杂度高,即每次判断一张新图片时,我们都需要遍历所有的训练数据,将训练数据的值与待判断题图片的像素值进行比较,而且十分不精确。

  SVM算法的特点是需要模型需要经过长时间的训练(例如在本次实践中,训练模型就花了2.5分钟,这还仅仅是在数据规模不是很大的情况下),而之前的KNN不需要任何的训练和迭代过程,所谓的训练,仅仅是将所有的像素值都存在了一个矩阵中进行比较而已。但是SVM的判断过程极其迅速,只需要做一个矩阵乘法,然后找到其中分数最高的类就可以实现,不需要遍历整个训练集,能够更为方便的判断数据,这是SVM相较于KNN在时间性能上比较优秀的地方,此外,在算法的正确性方面,SVM跟KNN比较也有了长足的进步。

此外,针对SVM整体的实现思路以及更多的细节,我写了一篇博客https://www.cnblogs.com/Lbmttw/p/16830180.html

本周学习遇到的困难是在神经网络的部分的反向传播,当f=wx+b中的wx都是矩阵时,其梯度的计算让我下午的时候推导了好久,怎么想都觉得应该是一个的三维矩阵才能描述,后来忽然想到这个三维矩阵中大部分元素都是0,并且根据矩乘法的性质只有输出的fij和xij中的i相等时,梯度才不为0,根据这个性质,可以将三维矩阵压缩为一个二维的n*m的矩阵。数学在反向传播中还是比较重要的。最大的收获是初步确定了当前阶段的学习方法:先看完cs231n的视频讲解部分,然后看英文的笔记,针对笔记中不懂的地方去拓展学习,学习完毕后将代码复现出来。写完代码过后,将整个算法的具体思路复现出来,以此为一个循环。

cv学习总结(SVM,softmax)10.24-10.30的更多相关文章

  1. Cheatsheet: 2013 10.24 ~ 10.31

    Web Performance Comparison Between Node.js and Java EE Other Hidden Productivity Secrets With Alfred ...

  2. 【records】10.24..10.30

    做的题越来越少了; 我是不是该学下网络流.

  3. python中使用Opencv进行车牌号检测——2018.10.24

    初学Python.Opencv,想用它做个实例解决车牌号检测. 车牌号检测需要分为四个部分:1.车辆图像获取.2.车牌定位.3.车牌字符分割和4.车牌字符识别 在百度查到了车牌识别部分车牌定位和车牌字 ...

  4. 背水一战 Windows 10 (24) - MVVM: 通过 Binding 或 x:Bind 结合 Command 实现,通过非 ButtonBase 触发命令

    [源码下载] 背水一战 Windows 10 (24) - MVVM: 通过 Binding 或 x:Bind 结合 Command 实现,通过非 ButtonBase 触发命令 作者:webabcd ...

  5. 深度学习框架-caffe安装-Mac OSX 10.12

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px ".PingFang SC"; color: #454545 } p.p2 ...

  6. 10.24 正睿停课训练 Day8 AM

    目录 2018.10.24 正睿停课训练 Day8 AM A 棒棒糖(组合) B 彩虹糖(思路 博弈) C 泡泡糖(DP) 考试代码 A B C 2018.10.24 正睿停课训练 Day8 AM 期 ...

  7. table-cell http://www.cnblogs.com/StormSpirit/archive/2012/10/24/2736453.html

    http://www.cnblogs.com/StormSpirit/archive/2012/10/24/2736453.html

  8. 使用mybatis提供的各种标签方法实现动态拼接Sql。使用foreach标签实现遍历查询。比如实现select * from user where id in(1,10,24)这条sql查询语句。

    向sql传递数组或List,mybatis使用foreach解析,如下: 需求: 传入多个id查询用户信息,用下边的sql实现: select * from user where id in(1,10 ...

  9. amazeui学习笔记--css(常用组件10)--导航条Topbar

    amazeui学习笔记--css(常用组件10)--导航条Topbar 一.总结 1. 导航条:就是页面最顶端的导航条:在容器上添加 .am-topbar class,然后按照示例组织所需内容.< ...

  10. Java习题10.24

    Java习题10.24 1. 1,3.connect()与accept():这两个系统调用用于完成一个完整相关的建立,其中connect()用于建立连接.accept()用于使服务器等待来自某客户进程 ...

随机推荐

  1. Spring Bean 的生命周期(详细解读)

    Spring Bean 的生命周期简单易懂.在一个 bean 实例被初始化时,需要执行一系列的初始化操作以达到可用的状态.同样的,当一个 bean 不再被调用时需要进行相关的析构操作,并从 bean ...

  2. 【深入浅出 Yarn 架构与实现】5-3 Yarn 调度器资源抢占模型

    本篇将对 Yarn 调度器中的资源抢占方式进行探究.分析当集群资源不足时,占用量资源少的队列,是如何从其他队列中抢夺资源的.我们将深入源码,一步步分析抢夺资源的具体逻辑. 一.简介 在资源调度器中,以 ...

  3. 生产事故-记一次特殊的OOM排查

    入职多年,面对生产环境,尽管都是小心翼翼,慎之又慎,还是难免捅出篓子.轻则满头大汗,面红耳赤.重则系统停摆,损失资金.每一个生产事故的背后,都是宝贵的经验和教训,都是项目成员的血泪史.为了更好地防范和 ...

  4. pandas之分类操作

    通常情况下,数据集中会存在许多同一类别的信息,比如相同国家.相同行政编码.相同性别等,当这些相同类别的数据多次出现时,就会给数据处理增添许多麻烦,导致数据集变得臃肿,不能直观.清晰地展示数据. 针对上 ...

  5. ChatGPT 与 Midjourney 强强联手,让先秦阿房宫重现辉煌!

    Midjourney 是一款非常特殊的 AI 绘画聊天机器人,它并不是软件,也不用安装,而是直接搭载在 Discord 平台之上,所有的功能都是通过调用 Discord 的聊天机器人程序实现的.要想使 ...

  6. 【Note】倍增

    真的不会.QAQ 目录 简介 大家都见过的应用:倍增求 \(\text{LCA}\) 倍增求 \(\text{LCA}\) ,但是动态加点,但是不会 \(lct\) 例题:[ZJOI2012]灾难(D ...

  7. 和我一起学 Three.js【初级篇】:1. 搭建 3D 场景

    欢迎关注「前端乱步」公众号,我会在此分享 Web 开发技术,前沿科技与互联网资讯. 0. 系列文章合集 本系列第 6,7 章节支持微信公众号内付费观看,将在全系列文章点赞数+评论数 >= 500 ...

  8. 从ajax到跨域引发的相关面试题总结

    转载请注明出处: 1.ajax异步和同步的区别 Ajax是一种基于JavaScript语言和XMLHttpRequest对象的异步数据传输技术,通过它可以使不用刷新整个页面的情况下,对页面进行部分更新 ...

  9. opencv基础

    Python 和 OpenCV 的结合是计算机视觉领域中应用最为广泛的一种方式,它们的结合使得开发者可以快速.高效地完成各种视觉任务.本文将介绍 Python 和 OpenCV 的基础使用,包括安装. ...

  10. 从源码角度深入解析Callable接口

    摘要:从源码角度深入解析Callable接口,希望大家踏下心来,打开你的IDE,跟着文章看源码,相信你一定收获不小. 本文分享自华为云社区<一个Callable接口能有多少知识点?>,作者 ...