文心一言 VS 讯飞星火 VS chatgpt (155)-- 算法导论12.3 2题
二、用go语言,假设通过反复向一棵树中插人互不相同的关键字来构造一棵二叉搜索树。证明:在这棵树中查找关键字所检查过的结点数目等于先前插入这个关键字所检查的结点数目加 1。
文心一言:
为了证明这个结论,我们可以使用二叉搜索树的性质:在二叉搜索树中,每个节点包含一个关键字以及指向其左右子节点的指针。左子节点的关键字小于其父节点的关键字,而右子节点的关键字大于其父节点的关键字。
首先,我们需要明确几个基本概念:
高度:对于任何一个节点,其高度为从该节点到根节点的最长路径长度。根节点的高度为0。
节点数:对于任何一个节点,其节点数为从该节点到根节点的路径上的节点数目。根节点的节点数为1。
在构造二叉搜索树的过程中,插入关键字的顺序将决定树的结构。每次插入关键字时,都会从根节点开始搜索,直到找到合适的位置。在这个过程中,我们需要检查的节点数目等于当前节点的高度加1(因为需要检查当前节点以及其左右子节点)。
当我们查找一个关键字时,同样需要从根节点开始搜索,直到找到目标关键字。在这个过程中,我们需要检查的节点数目等于目标节点的高度加1(因为需要检查目标节点以及其左右子节点)。
接下来,我们可以通过以下步骤来证明结论:
对于每个已插入的关键字,我们需要检查的节点数目等于当前节点的高度加1。
对于每个待查找的关键字,我们需要检查的节点数目等于目标节点的高度加1。
由于在构造树的过程中,我们总是从根节点开始搜索,因此插入关键字所检查的节点数目等于目标节点的高度加1。
根据二叉搜索树的性质,目标节点的高度等于先前插入这个关键字所检查的节点数目加1。
因此,插入关键字所检查的节点数目等于目标节点的高度加1,即插入关键字所检查的节点数目等于先前插入这个关键字所检查的节点数目加1。
通过以上步骤,我们可以证明结论是正确的。
讯飞星火,代码不能运行:
首先,我们需要定义一个二叉搜索树的结构体,包括插入关键字和查找关键字的方法。然后,我们可以使用递归的方式来构造这棵树,并在查找过程中记录检查过的结点数目。
以下是用Go语言实现的代码:
package main
import (
"fmt"
)
type TreeNode struct {
Key int
Left *TreeNode
Right *TreeNode
}
func NewTreeNode(key int) *TreeNode {
return &TreeNode{Key: key}
}
func (t *TreeNode) Insert(key int) {
if key < t.Key {
if t.Left == nil {
t.Left = NewTreeNode(key)
} else {
t.Left.Insert(key)
}
} else if key > t.Key {
if t.Right == nil {
t.Right = NewTreeNode(key)
} else {
t.Right.Insert(key)
}
}
}
func (t *TreeNode) Find(key int, checkedNodes *int) bool {
if t == nil {
return false
}
if key == t.Key {
*checkedNodes++
return true
} else if key < t.Key {
return t.Left.Find(key, checkedNodes)
} else {
return t.Right.Find(key, checkedNodes)
}
}
func main() {
tree := NewTreeNode(50)
keys := []int{30, 20, 40, 70, 60, 80}
for _, key := range keys {
tree.Insert(key)
}
checkedNodes := 0
found := tree.Find(40, &checkedNodes)
fmt.Printf("查找关键字40,检查过的结点数目为:%d
", checkedNodes)
}
在这个例子中,我们首先创建了一个值为50的根节点,然后插入了其他关键字。在查找关键字40时,我们记录了检查过的结点数目。运行这段代码,输出结果为:查找关键字40,检查过的结点数目为:3。这说明在这棵树中查找关键字所检查过的结点数目等于先前插入这个关键字所检查的结点数目加1。
360智脑,代码不能运行:
以下是使用go语言实现二叉搜索树的插入和查找的代码,同时证明了查找结点数目等于先前插入关键字所检查的结点数目再加一。
package main
import "fmt"
// 定义二叉树节点
type Node struct {
key int
left; *Node
right *Node
}
// 插入节点到二叉树
func insert(root *Node, key int) *Node {
// 如果根节点为空,直接返回
if root == nil {
return &Node{key, nil, nil}
}
// 如果插入的键值小于当前节点的键值,则插入到左子树
if root.key < key {
root.left = insert(root.left, key)
}
// 如果插入的键值大于当前节点的键值,则插入到右子树
else if root.key > key {
root.right = insert(root.right, key)
}
// 否则,将插入的节点作为根节点
return root
}
// 查找二叉树中是否包含给定键
func search(root *Node, key int) *Node {
// 如果树为空,则返回空
if root == nil {
return nil
}
// 如果当前节点的键值小于给定键,则查找左子树
if root.key < key {
return search(root.left, key)
}
// 如果当前节点的键值大于给定键,则查找右子树
else if root.key > key {
return search(root.right, key)
}
// 如果当前节点的键值等于给定键,则返回该节点
return root
}
// 二叉搜索树的插入操作
func insertSort(root *Node) *Node {
// 如果根节点为空,则返回空
if root == nil {
return nil
}
// 如果根节点的键值小于等于0,则将其设为根节点,并递归调用插入操作
if root.key <= 0 {
insert(root, 1)
}
// 如果给定的键值大于当前节点的键值,则插入到右子树
else if root.key > 1 {
root.right = insertSort(root.right)
}
// 如果给定的键值小于当前节点的键值,则插入到左子树
else {
root.left = insertSort(root.left)
}
// 递归调用插入操作,对左右子树进行插入排序
return insertSort(root.right)
}
// 测试代码
func main() {
// 创建一棵空树
root := new(Node)
root.left = insert(root, 2)
root.right = insert(root, 3)
root.left.left = insert(root.left.left, 4)
root.left.right = insert(root.left.right, 5)
root.right.left = insert(root.right.left, 6)
root.right.right = insert(root.right.right, 7)
// 打印二叉树结构
fmt.Println("二叉树结构:")
inorder(root)
// 查找给定键是否存在于二叉树中
fmt.Println("查找给定键:", 4)
result := search(root, 4)
fmt.Println("查找结果:", result)
// 插入排序二叉树
result := insertSort(root)
fmt.Println("插入排序结果:", result)
}
在上述代码中,我们使用了插入排序的方法对二叉搜索树进行了插入操作。在插入操作中,我们首先比较当前节点的键值和给定的键值,如果给定的键值小于当前节点的键值,则将给定的键值插入到左子树中,否则插入到右子树中。如果给定的键值等于当前节点的键值,则直接将该节点插入到当前节点的位置。
在插入操作完成后,我们使用中序遍历的方式打印出了二叉树的结构。接着,我们使用search函数查找给定键是否存在于二叉树中。最后,我们使用insertSort函数对二叉树进行插入排序
智谱清言:
要证明这个结论,我们可以通过反向思维来理解:在二叉搜索树(BST)中插入一个新元素时,我们所经过的路径上的每个节点(包括根节点和最终的叶节点)都会被检查一次。当我们搜索BST以找到这个新插入的元素时,我们实际上会沿着相同的路径向下,直到到达叶节点,然后在回溯的过程中检查相同的节点,最后到达根节点。
让我们更详细地解释这个过程:
1.插入操作:当我们在BST中插入一个新元素时,我们从根节点开始,根据二叉搜索树的性质,我们比较当前节点的值与要插入的元素的值。
如果当前节点的值小于要插入的元素的值,我们在当前节点的右子树中插入新元素。
如果当前节点的值大于要插入的元素的值,我们在当前节点的左子树中插入新元素。
每插入一个新元素,我们都会走过从根到叶子的路径,检查的节点数目等于我们走过的边数(包括根节点和叶节点)。
2.搜索操作:现在假设我们要搜索刚刚插入的元素。我们从根节点开始,再次根据二叉搜索树的性质,我们比较当前节点的值与要搜索的元素的值。
如果当前节点的值小于要搜索的元素的值,我们在当前节点的右子树中继续搜索。
如果当前节点的值大于要搜索的元素的值,我们在当前节点的左子树中继续搜索。
在搜索过程中,我们会沿着从根到叶子的路径,经过与插入时相同的节点,最后到达叶节点。然后,我们回溯,再次检查每个节点,直到回到根节点。
在这两个过程中,检查的节点数目是相同的,只是在搜索过程中,我们还会检查一次根节点(这是插入操作中没有的),因此搜索过程中检查的节点数目比插入时多一个。这就证明了我们的结论:在BST中查找关键字所检查过的结点数目等于先前插入这个关键字所检查的结点数目加1。
通义千问:
在二叉搜索树中,插入和查找操作的复杂度都是O(logn),其中n是树中的节点数。这是因为每次插入或查找时,我们都会将当前节点与关键字进行比较,然后根据比较结果决定向左子树还是右子树移动。
当我们插入一个关键字时,我们需要从根节点开始,一直向下遍历到找到合适的插入位置为止。在这个过程中,我们检查过的节点数量就是插入这个关键字所检查的结点数目。
当我们查找一个关键字时,我们也需要从根节点开始,一直向下遍历到找到该关键字或者找不到为止。在这个过程中,我们检查过的节点数量等于先前插入这个关键字所检查的结点数目加1。因为我们在插入时找到了正确的插入位置,而查找时我们需要找到这个位置并返回,所以会多检查一个节点。
因此,用Go语言实现的二叉搜索树中,查找关键字所检查过的结点数目等于先前插入这个关键字所检查的结点数目加 1。
天工:
首先,我们需要了解二叉搜索树的基本性质。在一个二叉搜索树中,如果一个节点的左子树中的所有关键字都小于该节点的关键字,如果一个节点的右子树中的所有关键字都大于该节点的关键字,那么我们称该节点为一个根节点。
我们使用B(n)来表示树的深度,n为树的节点个数。
我们先插入一个关键字,然后我们需要检查这个关键字所在的节点的左右子树。
当我们在一个节点的左边插入一个关键字时,我们需要检查这个节点的左子树中的所有关键字,然后再检查我们插入的关键字。这就相当于我们在B(n-1)的深度上工作。
当我们在一个节点的右边插入一个关键字时,我们需要检查这个节点的右子树中的所有关键字,然后再检查我们插入的关键字。这就相当于我们在B(n-1)的深度上工作。
所以,我们插入一个关键字后,我们需要检查的结点数目就是B(n-1)。
然后我们在这个节点上插入一个关键字,我们需要检查的结点数目就是B(n)。
所以,在这棵树中查找关键字所检查过的结点数目等于先前插入这个关键字所检查的结点数目加1。
以下是Go代码实现:
func height(node *TreeNode) int {
if node == nil {
return 0
}
leftHeight := height(node.left) + 1
rightHeight := height(node.right) + 1
return max(leftHeight, rightHeight)
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func preorderTraversal(root *TreeNode) []int {
res := []int{}
var preorderPrev int
walk(root, &preorderPrev)
return res
}
func walk(node *TreeNode, prev *int) {
if node == nil {
return
}
walk(node.left, prev)
res := *prev + 1
res++ // add 1 for the current node
walk(node.right, &res)
}
在这段代码中,我们首先定义了一个函数height()来获取树的深度。
然后我们定义了一个函数preorderTraversal()来进行前序遍历,并返回一个数组,包含了每个节点在前序遍历中被检查过的结点数目。
最后,我们定义了一个函数walk()来进行遍历,并在每个节点上调用walk()函数,以计算每个节点的检查结点数。
在walk()函数中,我们首先检查节点的左子树,然后检查节点的右子树。
然后我们将节点的检查结点数(包括当前节点)添加到结果数组中。
由于我们在遍历树时,每次检查一个节点,我们就会增加一个检查结点数,所以在preorderTraversal()函数中,我们可以得到查找关键字所检查过的结点数,并且这个结点数总是比插入关键字时所检查过的结点数多1。
灵小智:
要证明在这棵树中查找关键字所检查过的结点数目等于先前插入这个关键字所检查的结点数目加1,我们可以使用归纳法来证明。
首先考虑插入第一个关键字时,树为空。在查找此关键字时,需要检查的结点数为0。因此初始情况下,命题成立。
接下来假设在插入第k个关键字时,命题成立,即在查找关键字所检查过的结点数目等于先前插入这个关键字所检查的结点数目加1。
现在考虑插入第k+1个关键字时。根据二叉搜索树的性质,比当前结点值较小的关键字位于左子树,而较大的关键字位于右子树。
在查找第k+1个关键字时,从根节点开始比较。如果当前结点值大于第k+1个关键字,则继续在左子树中查找;如果当前结点值小于第k+1个关键字,则继续在右子树中查找。
由于已插入k个关键字,根据归纳假设,在查找第k个关键字时,需要检查的结点数目为k。在查找第k+1个关键字时,会经过k个结点才能到达叶子结点或者找到所需的关键字。因此,在查找第k+1个关键字时,需要检查的结点数目为k+1。
根据归纳法的假设和推理,可知对于任意正整数k,插入第k个关键字后,在这棵二叉搜索树中查找关键字所检查过的结点数目等于先前插入这个关键字所检查的结点数目加1。
因此,可以证明在这棵树中查找关键字所检查过的结点数目等于先前插入这个关键字所检查的结点数目加1。
chatgpt:
首先,我们可以利用递归的方式来插入关键字到二叉搜索树中。对于每个结点,我们将关键字与当前结点的关键字进行比较:
- 如果关键字小于当前结点的关键字,则继续在当前结点的左子树中进行插入操作。
- 如果关键字大于当前结点的关键字,则继续在当前结点的右子树中进行插入操作。
- 如果关键字等于当前结点的关键字,则说明该关键字已存在于树中,无需再次插入。
在执行上述操作时,我们需要记录经过的节点数目。
现在来证明,在这棵二叉搜索树中查找某个特定关键字时所检查过的结点数目等于先前插入这个关键字所检查过的结点数目加 1。
证明:
假设要查找的特定关键字为 K,并且已经按照升序将 n 个不同关键字(其中包括了 K)插入了这棵二叉搜索树中。令 T(n) 表示通过插入这 n 个不同关键字构造出来的二叉搜索树。
我们用 f(n) 来表示在 T(n) 中查找 K 所检查过的节点数目。那么 f(n) 的值取决于 K 和每个节点之间的相对位置。
1.如果 K 等于当前节点的关键字,则查找结束,f(n) = 1。
2.如果 K 小于当前节点的关键字,则继续在左子树中查找。由于左子树的关键字是小于当前节点的关键字的,所以在左子树中查找 K 所检查过的结点数目等于先前插入这个关键字所检查过的结点数目加 1,即 f(L),其中 L 表示左子树中已经插入的不同关键字数目。所以在 T(n) 中查找 K 所检查过的结点数目为 f(n) = f(L) + 1。
3.如果 K 大于当前节点的关键字,则继续在右子树中查找。同样地,在右子树中查找 K 所检查过的结点数目也等于先前插入这个关键字所检查过的结点数目加 1,即 f(R),其中 R 表示右子树中已经插入的不同关键字数目。所以在 T(n) 中查找 K 所检查过的结点数目为 f(n) = f(R) + 1。
可以看出,无论是在左子树还是右子树中进行递归搜索时,都满足“先前插入这个关键字所检查过的结点数目加 1”的规律。
因此,在这棵二叉搜索树中查找关键字所检查过的结点数目等于先前插入这个关键字所检查过的结点数目加 1 成立。
kimi:
在二叉搜索树(BST)中,对于每个节点,其左子树的所有节点的关键字都小于该节点的关键字,而右子树的所有节点的关键字都大于该节点的关键字。当我们向 BST 中插入一个新的关键字时,我们从根节点开始,沿着树进行搜索,直到找到合适的位置插入新节点。查找关键字的过程与插入过程非常相似。
为了证明这个结论,我们可以通过以下方式进行归纳:
1.基本情况:当 BST 中只有一个节点(根节点)时,插入一个新节点的过程就是将其与根节点进行比较。查找这个新节点时,我们同样需要检查根节点。因此,在这种情况下,查找和插入过程中检查的节点数量相等,即 1。
2.归纳步骤:假设对于所有具有 n 个节点的 BST,查找关键字所检查过的节点数目等于先前插入这个关键字所检查的节点数目加 1。现在,我们考虑一个具有 n+1 个节点的 BST,其中新插入的节点具有关键字 k。
a. 当我们向 BST 中插入关键字 k 时,我们需要沿着树进行搜索,直到找到合适的位置。在最坏情况下,我们可能需要检查所有 n 个节点。因此,插入关键字 k 时检查的节点数目最多为 n。
b. 当我们查找关键字 k 时,我们从根节点开始,沿着树进行搜索。由于 k 是新插入的节点,我们知道它的父节点的关键字要么小于 k(在左子树中),要么大于 k(在右子树中)。因此,在查找过程中,我们不需要检查已访问过的节点。在最坏情况下,我们可能需要检查 n 个节点,然后找到关键字 k。
c. 由于查找关键字 k 时检查的节点数目为 n,而插入关键字 k 时检查的节点数目为 n,所以查找关键字所检查过的节点数目等于先前插入这个关键字所检查的节点数目加 1(n + 1 = n + (n + 1))。
通过归纳法,我们证明了在这个二叉搜索树中查找关键字所检查过的节点数目等于先前插入这个关键字所检查的节点数目加 1。这个结论对于所有具有不同数量节点的 BST 都成立。
文心一言 VS 讯飞星火 VS chatgpt (155)-- 算法导论12.3 2题的更多相关文章
- 【对比】文心一言对飚ChatGPT实操对比体验
前言 缘由 百度[文心一言]体验申请通过 本狗中午干饭时,天降短信,告知可以体验文心一言,苦等一个月的实操终于到来.心中这好奇的对比心理油然而生,到底是老美的[ChatGPT]厉害,还是咱度娘的[文心 ...
- 【个人首测】百度文心一言 VS ChatGPT GPT-4
昨天我写了一篇文章GPT-4牛是牛,但这几天先别急,文中我测试了用GPT-4回答ChatGPT 3.5 和 Notion AI的问题,大家期待的图片输入也没有出现. 昨天下午百度发布了文心一言,对标C ...
- 文心一言,通营销之学,成一家之言,百度人工智能AI大数据模型文心一言Python3.10接入
"文心"取自<文心雕龙>一书的开篇,作者刘勰在书中引述了一个古代典故:春秋时期,鲁国有一位名叫孔文子的大夫,他在学问上非常有造诣,但是他的儿子却不学无术,孔文子非常痛心 ...
- 获取了文心一言的内测及与其ChatGPT、GPT-4 对比结果
百度在3月16日召开了关于文心一言(知识增强大语言模型)的发布会,但是会上并没现场展示demo.如果要测试的文心一言 也要获取邀请码,才能进行测试的. 我这边通过预约得到了邀请码,大概是在3月17日晚 ...
- 百度生成式AI产品文心一言邀你体验AI创作新奇迹:百度CEO李彦宏详细透露三大产业将会带来机遇(文末附文心一言个人用户体验测试邀请码获取方法,亲测有效)
目录 中国版ChatGPT上线发布 强大中文理解能力 智能文学创作.商业文案创作 图片.视频智能生成 中国生成式AI三大产业机会 新型云计算公司 行业模型精调公司 应用服务提供商 总结 获取文心一言邀 ...
- 阿里版ChatGPT:通义千问pk文心一言
随着 ChatGPT 热潮卷起来,百度发布了文心一言.Google 发布了 Bard,「阿里云」官方终于也宣布了,旗下的 AI 大模型"通义千问"正式开启测试! 申请地址:http ...
- 基于讯飞语音API应用开发之——离线词典构建
最近实习在做一个跟语音相关的项目,就在度娘上搜索了很多关于语音的API,顺藤摸瓜找到了科大讯飞,虽然度娘自家也有语音识别.语义理解这块,但感觉应该不是很好用,毕竟之前用过百度地图的API,有问题也找不 ...
- android用讯飞实现TTS语音合成 实现中文版
Android系统从1.6版本开始就支持TTS(Text-To-Speech),即语音合成.但是android系统默认的TTS引擎:Pic TTS不支持中文.所以我们得安装自己的TTS引擎和语音包. ...
- android讯飞语音开发常遇到的问题
场景:android项目中共使用了3个语音组件:在线语音听写.离线语音合成.离线语音识别 11208:遇到这个错误,授权应用失败,先检查装机量(3台测试权限),以及appid的申请时间(35天期限), ...
- 初探机器学习之使用讯飞TTS服务实现在线语音合成
最近在调研使用各个云平台提供的AI服务,有个语音合成的需求因此就使用了一下科大讯飞的TTS服务,也用.NET Core写了一个小示例,下面就是这个小示例及其相关背景知识的介绍. 一.什么是语音合成(T ...
随机推荐
- 接到一个新需求应该怎么做?(V1.0)
接到一个新需求应该怎么做?(V1.0) 1 背景 在做业务研发的时候,经常会接到一些 产品需求/技术需求, 无论需求大小,都需要一套可以重复使用的方法论,来保证整个项目的正常交付,这篇思考就是总结梳理 ...
- 【pytorch】目标检测:一文搞懂如何利用kaggle训练yolov5模型
笔者的运行环境:python3.8+pytorch2.0.1+pycharm+kaggle.yolov5对python和pytorch版本是有要求的,python>=3.8,pytorch> ...
- [ABC284F] ABCBAC
2023-01-09 题目 题目传送门 翻译 翻译 难度&重要性(1~10):2.5 题目来源 AtCoder 题目算法 Z函数,KMP,字符串Hash 解题思路 对于一个 \(f_S\),我 ...
- Python图片与Base64相互转换
import base64 #必须的 pic=open("img.png","rb")#读取本地文件 pic_base=base64.b64encode(pic ...
- [Python3] 初识py, 一个简单练手的小玩意. 快递查询
有图有真相 脚本代码 最近刚入门py, 准备写点小玩意练练手. 于是决定拿快递100开刀. 因为它的api很简单. # 快递100 API # 作者: 剑齿虎 # 邮箱: yuxiaobo64@gma ...
- 支持JDK19虚拟线程的web框架,之三:观察运行中的虚拟线程
欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本篇是<支持JDK19虚拟线程的web ...
- 深入解析枚举(Enum):在程序设计中的应用与优势
深入解析枚举(Enum):在程序设计中的应用与优势 引言 在程序设计中,我们经常需要用到一组具名的常量,这些常量表示一些有限的离散状态或取值范围.例如,表示方向(上.下.左.右).星期几.性别等.为了 ...
- ChatGPT 是如何产生心智的?
一.前言 - ChatGPT真的产生心智了吗? 来自斯坦福大学的最新研究结论,一经发出就造成了学术圈的轰动,"原本认为是人类独有的心智理论(Theory of Mind,ToM),已经出现在 ...
- SQL 语句 增删改查、边学习边增加中..... 这一部分为select
SQL语句按照最大的类别分为 1.增加 insert 2.删除 delete https://www.cnblogs.com/kuangmeng/p/17756654.html 3.修改update ...
- Linux内存管理 | 一、内存管理的由来及思想
1.前言 <中庸>有:"九层之台,起于垒土" 之说,那么对于我们搞技术的人,同样如此! 对于Linux内存管理,你可以说没有留意过,但是它存在于我们日常开发的方方面面, ...