题目链接

题目

题目描述

企鹅国中有 \(N\) 座城市,编号从 \(1\) 到 \(N\) 。

对于任意的两座城市 \(i\) 和 \(j\),企鹅们可以花费 \((i\,\,xor\,\, j)*C\) 的时间从城市 \(i\) 走到城市 \(j\) ,这里 \(C\) 为一个给定的常数。

当然除此之外还有 \(M\) 条单向的快捷通道,第i条快捷通道从第 \(F_i\) 个城市通向第 \(T_i\) 个城市,走这条通道需要消耗 \(V_i\) ​的时间。

现在来自Penguin Kingdom University的企鹅豆豆正在考虑从城市A前往城市B最少需要多少时间?

输入描述

输入第一行包含三个整数N,M,C,表示企鹅国城市的个数、快捷通道的个数以及题面中提到的给定的常数C。

接下来的M行,每行三个正整数Fi,Ti,Vi(1≤Fi≤N,1≤Ti≤N,1≤Vi≤100),分别表示对应通道的起点城市标号、终点城市标号和通过这条通道需要消耗的时间。

最后一行两个正整数A,B(1≤C≤100),表示企鹅豆豆选择的起点城市标号和终点城市标号。

输出描述

输出一行一个整数,表示从城市 A 前往城市 B 需要的最少时间

示例1

输入

4 2 1
1 3 1
2 4 4
1 4

输出

5

说明

直接从 1 走到 4 就好了。

示例2

输入

7 2 10
1 3 1
2 4 4
3 6

输出

34

说明

先从 3 走到 2 ,再从 2 通过通道到达 4 ,再从 4 走到 6。

备注

题解

知识点:图论建模,最短路,位运算。

这道题关键在于怎么处理任意城市之间走路的边,显然不能每个城市之间都建一条边,因此考虑利用异或运算的特点最小化建的边数。

注意到任意两个城市 \(i,j\) 之间走路,可以理解为把 \(i\) 按位修改成 \(j\) ,那么我们可以把任意一次走路分解为若干次走路,每次只修改一位。例如,从 0110 走到 1011 ,可以分解为 0110->1110->1010->1011 ,总花费是不变的,但每次只修改一位。因此,我们其实只要对每个城市 \(i\) 出发,枚举修改一位二进制位 \(j\) 的终点城市 \(i \oplus j\) 连边即可,花费是 \(j \times C\) ,就能覆盖所有可能了,这样每个城市只需建十几条边就行了。

最后跑一下最短路就结束了。

时间复杂度 \(O((m+n)\log(n+m))\)

空间复杂度 \(O(n+m)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; const int N = 100007, M = 500007 + 32 * N; struct edge {
int v, nxt, w;
}e[M];
int h[N], idx;
void add(int u, int v, int w) {
e[++idx] = { v,h[u],w };
h[u] = idx;
} bool vis[N];
int dis[N];
struct node {
int v, w;
friend bool operator< (node a, node b) {
return a.w > b.w;
}
};
priority_queue<node> pq;
void dijkstra(int st) {
memset(dis, 0x3f, sizeof(dis));
pq.push({ st,0 });
dis[st] = 0;
while (!pq.empty()) {
int u = pq.top().v;
pq.pop();
if (vis[u]) continue;
vis[u] = 1;
for (int i = h[u];i;i = e[i].nxt) {
int v = e[i].v, w = e[i].w;
if (dis[v] > dis[u] + w) {
dis[v] = dis[u] + w;
pq.push({ v,dis[v] });
}
}
}
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n, m, c;
cin >> n >> m >> c;
for (int i = 1;i <= m;i++) {
int u, v, w;
cin >> u >> v >> w;
add(u, v, w);
}
for (int i = 0;i <= n;i++) {
for (int j = 1;j <= n;j <<= 1) {//枚举修改的二进制位,修改一位即可,可以传递,不会变差。
if ((i ^ j) > n) continue;
add(i, i ^ j, j * c);
}
}
int st, en;
cin >> st >> en;
dijkstra(st);
cout << dis[en] << '\n';
return 0;
}

NC15479 最短路的更多相关文章

  1. bzoj1001--最大流转最短路

    http://www.lydsy.com/JudgeOnline/problem.php?id=1001 思路:这应该算是经典的最大流求最小割吧.不过题目中n,m<=1000,用最大流会TLE, ...

  2. 【USACO 3.2】Sweet Butter(最短路)

    题意 一个联通图里给定若干个点,求他们到某点距离之和的最小值. 题解 枚举到的某点,然后优先队列优化的dijkstra求最短路,把给定的点到其的最短路加起来,更新最小值.复杂度是\(O(NElogE) ...

  3. Sicily 1031: Campus (最短路)

    这是一道典型的最短路问题,直接用Dijkstra算法便可求解,主要是需要考虑输入的点是不是在已给出的地图中,具体看代码 #include<bits/stdc++.h> #define MA ...

  4. 最短路(Floyd)

    关于最短的先记下了 Floyd算法: 1.比较精简准确的关于Floyd思想的表达:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B.所以,我们假设maz ...

  5. bzoj1266最短路+最小割

    本来写了spfa wa了 看到网上有人写Floyd过了 表示不开心 ̄へ ̄ 改成Floyd试试... 还是wa ヾ(。`Д´。)原来是建图错了(样例怎么过的) 结果T了 于是把Floyd改回spfa 还 ...

  6. HDU2433 BFS最短路

    Travel Time Limit: 10000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  7. 最短路(代码来源于kuangbin和百度)

    最短路 最短路有多种算法,常见的有一下几种:Dijstra.Floyd.Bellman-Ford,其中Dijstra和Bellman-Ford还有优化:Dijstra可以用优先队列(或者堆)优化,Be ...

  8. Javascript优化细节:短路表达式

    什么是短路表达式? 短路表达式:作为"&&"和"||"操作符的操作数表达式,这些表达式在进行求值时,只要最终的结果已经可以确定是真或假,求值过程 ...

  9. Python中三目计算符的正确用法及短路逻辑

    今天在看别人代码时看到这样一种写法, 感觉是个挺容易踩到的坑, 搞清楚后写出来备忘. 短路逻辑 Python中进行逻辑运算的时候, 默认采用的是一种叫做短路逻辑的运算规则. 名字是很形象的, 下面直接 ...

  10. bzoj 1001狼抓兔子(对偶图+最短路)最大流

    推荐文章:<浅析最大最小定理在信息学竞赛中的应用>--周冬 题目 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还 ...

随机推荐

  1. React报错之Property does not exist on type 'JSX.IntrinsicElements'

    正文从这开始~ 总览 当组件名称以小写字母开头时,会导致"Property does not exist on type 'JSX.IntrinsicElements'"错误.为了 ...

  2. 解决python报错:ModuleNotFoundError: No module named '_sysconfigdata_x86_64_conda_linux_gnu'

    技术背景 在上一篇博客中执行过conda的更新以及用conda安装了gxx_linux-64之后,再执行pip的一些指令时,就会给出如下所示的报错: $ python3 -m pip list Tra ...

  3. tomcat 一闪而过 ( 解决方案 )

    配置JAVA_HOME,注意变量值是jdk的主目录,不是bin目录,并且不要加分号

  4. Nginx日志规则以及根据日志进行性能问题判断的思路

    Nginx日志规则以及根据日志进行性能问题判断的思路 背景 Nginx是开源方案里面能实现反向代理 负载均衡的首选. 但是有时候性能出问题比较难以分析和定位, 不知道是不是nginx的瓶颈 性能问题的 ...

  5. JVM内存参数的学习之三

    JVM内存参数的学习之三 背景 研究启动性能时, 顺便看到了jmap -heap 1 的部分信息 看到: MinHeapFreeRatio.MaxHeapFreeRatio 自己突然以为是 Perce ...

  6. [转帖]clickhouse 超底层原理& 高可用集群 实操(史上最全)

    https://www.cnblogs.com/crazymakercircle/p/16718469.html 文章很长,而且持续更新,建议收藏起来,慢慢读!疯狂创客圈总目录 博客园版 为您奉上珍贵 ...

  7. 指定特定IP走特定网卡的方法

    指定特定IP走特定网卡的方法 背景 目标: 能够在有VPN以及多个网卡的情况下, 使用特定的IP地址进行登录服务器. 作用: 便于审计以及安全管理, 避免出现安全风险. 方式方法: route 命令设 ...

  8. [转帖]linux shell 中数组的定义和for循环遍历的方法

    https://www.cnblogs.com/ysk123/p/11510718.html linux 中定义一个数据的语法为: variable=(arg1 arg2 arg3 ....) 中间用 ...

  9. [转帖]分析redis 大key

    http://www.lishuai.fun/2023/05/05/redis-bigkey/#/%E5%AE%89%E8%A3%85 redis-rdb-tools 是一个 python 的解析 r ...

  10. [转帖]ethtool 命令介绍

    https://www.jianshu.com/p/f456e73a0437 name ethtool - query or control network driver and hardware s ...