#coding:utf-8
import SimpleITK as sitk
import numpy as np
import cv2
# 膨胀
def dilateion(image):
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
# dilate = cv2.dilate(image, kernel, iterations=1)
dilate = cv2.morphologyEx(image, cv2.MORPH_DILATE, kernel)
return dilate
def erode(image):
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3,3))
# erode = cv2.erode(image, kernel, iterations=1)
erode = cv2.morphologyEx(image, cv2.MORPH_ERODE, kernel)
return erode
# 形态学梯度
def edge(image):
SE = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
img_grad = cv2.morphologyEx(image, cv2.MORPH_GRADIENT, SE)
return img_grad
# 开运算
def openOpreation(image):
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
open = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)
return open
# 闭运算
def closeOperation(image):
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
close = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel)
return close
# 读取3D图像,对每一个slice进行形态学变化
def read_3D(image, model="closeOperation"):
slices = image.shape[0]
result = np.zeros(img_num.shape)
for i in range(slices):
sli = img_num[i:i + 1, ...]
s = sli[0, ...]
if model == "dilateion":
slice = dilateion(s)
elif model =="edge":
slice = edge(s)
elif model == "erode":
slice = erode(s)
elif model == "edge":
slice = edge(s)
elif model == "openOpreation":
slice = openOpreation(s)
elif model == "closeOperation":
slice = closeOperation(s)
result[i, ...] = slice
return result
# 保存图像
def save(x, path):
predict_seg = sitk.GetImageFromArray(x)
sitk.WriteImage(predict_seg, path)
# 读取 nii文件
def read_nii(path):
image = sitk.ReadImage(path)
img_num = sitk.GetArrayFromImage(image)
return img_num
if __name__ == "__main__":
path = r"D:\myProject\HDC_vessel_seg\datasets\nii\image\vessel_12.nii"
imgpath = r"D:\myProject\HDC_vessel_seg\datasets\nii\image\image_12.nii"
img_num = read_nii(path)
img = read_nii(imgpath)
img_num = img_num[10:260,...]
img = img[10:260,...]
result = read_3D(img_num)
name = "closeOperation_"
save(result, path.replace("vessel_12", name + "vessel"))
# save(img_num, path.replace("vessel_12", "pre_vessel"))
# save(img, imgpath.replace("image_12", "pre_image"))

原图
膨胀
腐蚀
形态学梯度
先开后闭
先闭后开
 

图像形态学操作(cv2库实现)的更多相关文章

  1. 【图像处理】OpenCV+Python图像处理入门教程(七)图像形态学操作

    图像形态学主要从图像内提取分量信息,该分量信息通常对表达图像的特征具有重要意义.例如,在车牌号码识别中,能够使用形态学计算其重要特征信息,在进行识别时,只需对这些特征信息运算即可.图像形态学在目标视觉 ...

  2. 机器学习进阶-图像形态学操作-梯度运算 cv2.GRADIENT(梯度运算-膨胀图像-腐蚀后的图像)

    1.op = cv2.GRADIENT 用于梯度运算-膨胀图像-腐蚀后的图像 梯度运算:表示的是将膨胀以后的图像 - 腐蚀后的图像,获得了最终的边缘轮廓 代码: 第一步:读取pie图片 第二步:进行腐 ...

  3. 机器学习进阶-图像形态学操作-开运算与闭运算 1.cv2.morphologyEx(进行各类形态学变化) 2.op=cv2.MORPH_OPEN(先腐蚀后膨胀) 3.op=cv2.MORPH_CLOSE(先膨胀后腐蚀)

    1.cv2.morphologyEx(src, op, kernel) 进行各类形态学的变化 参数说明:src传入的图片,op进行变化的方式, kernel表示方框的大小 2.op =  cv2.MO ...

  4. 机器学习进阶-图像形态学操作-膨胀操作 1.cv2.dilate(进行膨胀操作)

    1.cv2.dilate(src, kernel, iteration) 参数说明: src表示输入的图片, kernel表示方框的大小, iteration表示迭代的次数 膨胀操作原理:存在一个ke ...

  5. 机器学习进阶-图像形态学操作-腐蚀操作 1.cv2.erode(进行腐蚀操作)

    1.cv2.erode(src, kernel, iteration) 参数说明:src表示的是输入图片,kernel表示的是方框的大小,iteration表示迭代的次数 腐蚀操作原理:存在一个ker ...

  6. opencv学习笔记(五)----图像的形态学操作

    图像的形态学操作有基本的腐蚀和膨胀操作和其余扩展形态学变换操作(高级操作)-----开运算,闭运算,礼帽(顶帽)操作,黑帽操作...(主要也是为了去噪声,改善图像) 形态学操作都是用于处理二值图像(其 ...

  7. 【OpenCV-Python】-图像形态学转化

    原文为段立辉翻译,感谢Linux公社此文档为自学转述,如有侵权请联系本人. 目标: • 学习不同的形态学操作,例如腐蚀,膨胀,开运算,闭运算等 • 学习的函数有:cv2.erode(),cv2.dil ...

  8. OpenCV中的图像形态学转换

    两个基本的形态学操作是腐蚀和膨胀.他们的变化构成了开运算,闭运算,梯度等.下面以这张图为例 1.腐蚀 这个操作会把前景物体的边界腐蚀掉. import cv2 import numpy as np i ...

  9. EasyPR--开发详解(4)形态学操作、尺寸验证、旋转等操作

    在上一篇深度分析与调优讨论中,我们介绍了高斯模糊,灰度化和Sobel算子.在本文中,会分析剩余的定位步骤. 根据前文的内容,车牌定位的功能还剩下如下的步骤,见下图中未涂灰的部分. 图1 车牌定位步骤 ...

  10. Atitit 图像处理—图像形态学(膨胀与腐蚀)

    Atitit 图像处理-图像形态学(膨胀与腐蚀) 1.1. 膨胀与腐蚀1 1.2. 图像处理之二值膨胀及应用2 1.3. 测试原理,可以给一个5*5pic,测试膨胀算法5 1.4. Photoshop ...

随机推荐

  1. Dubbo日志链路追踪TraceId选型

    一.目的 开发排查系统问题用得最多的手段就是查看系统日志,但是在分布式环境下使用日志定位问题还是比较麻烦,需要借助 全链路追踪ID 把上下文串联起来,本文主要分享基于 Spring Boot + Du ...

  2. RHCA rh442 001 调优本质 调优方法 监控

    调优是一种感知 调优按照成本和性能 一.架构及调优 二.代码及调优 三.配置类调优 从调优效果和成本成正比 设计电商,日访问百万级,未来可能千万级 数据库 系统 服务器多少台 缓存 appache,n ...

  3. 【Git】下载安装(Linux)

    安装CentOS8貌似有自带Git 可以先查看一下有没有 git --version 有或者没有都行,有的话安装就当是更新 没有就装,yum提供了安装,我们不需要自己压缩包安装了 yum instal ...

  4. Ubuntu18.04安装终端文件管理器ranger

    linux环境下终端的文件管理器ranger的安装: github下载地址: https://github.com/ranger/ranger 安装: pip install ranger-fm 启动 ...

  5. XXL-JOB系统化图文教程

    1.背景 大纲 调度任务在系统中中经常用到, 比如 定时发送营销短信 定时检查订单状态 等等..... 总之我们经常会用到定时任务 官方文档:https://www.xuxueli.com/xxl-j ...

  6. 数据库存储时间数据用timestamp 好还是 varchar好

    表示日期数据基本是date型,只有年月的用varchar2或者char,好处见下:1.数据规范.date对合法日期型会校验,包括闰年2月这种.避免字符型变量产生的某月32号,日期长度不对,日期格式不统 ...

  7. 最佳实践:解读GaussDB(DWS) 统计信息自动收集方案

    摘要:现在商用优化器大多都是基于统计信息进行查询代价评估,因此统计信息是否实时且准确对查询影响很大,特别是分布式数据库场景.本文详细介绍GaussDB(DWS)如何实现了一种轻量.实时.准确的统计信息 ...

  8. .NET 屏幕录制

    窗口/屏幕截图适用于截图.批注等工具场景,时时获取窗口/屏幕图像数据流呢,下面讲下视频会议共享桌面.远程桌面这些场景是如何实现画面录制的. 常见的屏幕画面时时采集方案,主要有GDI.WGC.DXGI. ...

  9. 旧物利用 - 将机顶盒改造为一台Linux开发机!

    前言 机顶盒型号:移动魔百盒CM201-2(CH),芯片组: hi3798mv300(hi3798mv3dmm),其他型号类似 理论上适用于以下SOC:Hi3798Mv100 / Hi3798Cv20 ...

  10. abc366-cnblog

    [E](E - Manhattan Multifocal Ellipse (atcoder.jp)) 解题思路 这题求的是满足\(\sum^n_{i=1}(|x-x_i|+|y-y_i|)\leq D ...