#coding:utf-8
import SimpleITK as sitk
import numpy as np
import cv2
# 膨胀
def dilateion(image):
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
# dilate = cv2.dilate(image, kernel, iterations=1)
dilate = cv2.morphologyEx(image, cv2.MORPH_DILATE, kernel)
return dilate
def erode(image):
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3,3))
# erode = cv2.erode(image, kernel, iterations=1)
erode = cv2.morphologyEx(image, cv2.MORPH_ERODE, kernel)
return erode
# 形态学梯度
def edge(image):
SE = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
img_grad = cv2.morphologyEx(image, cv2.MORPH_GRADIENT, SE)
return img_grad
# 开运算
def openOpreation(image):
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
open = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)
return open
# 闭运算
def closeOperation(image):
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
close = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel)
return close
# 读取3D图像,对每一个slice进行形态学变化
def read_3D(image, model="closeOperation"):
slices = image.shape[0]
result = np.zeros(img_num.shape)
for i in range(slices):
sli = img_num[i:i + 1, ...]
s = sli[0, ...]
if model == "dilateion":
slice = dilateion(s)
elif model =="edge":
slice = edge(s)
elif model == "erode":
slice = erode(s)
elif model == "edge":
slice = edge(s)
elif model == "openOpreation":
slice = openOpreation(s)
elif model == "closeOperation":
slice = closeOperation(s)
result[i, ...] = slice
return result
# 保存图像
def save(x, path):
predict_seg = sitk.GetImageFromArray(x)
sitk.WriteImage(predict_seg, path)
# 读取 nii文件
def read_nii(path):
image = sitk.ReadImage(path)
img_num = sitk.GetArrayFromImage(image)
return img_num
if __name__ == "__main__":
path = r"D:\myProject\HDC_vessel_seg\datasets\nii\image\vessel_12.nii"
imgpath = r"D:\myProject\HDC_vessel_seg\datasets\nii\image\image_12.nii"
img_num = read_nii(path)
img = read_nii(imgpath)
img_num = img_num[10:260,...]
img = img[10:260,...]
result = read_3D(img_num)
name = "closeOperation_"
save(result, path.replace("vessel_12", name + "vessel"))
# save(img_num, path.replace("vessel_12", "pre_vessel"))
# save(img, imgpath.replace("image_12", "pre_image"))

原图
膨胀
腐蚀
形态学梯度
先开后闭
先闭后开
 

图像形态学操作(cv2库实现)的更多相关文章

  1. 【图像处理】OpenCV+Python图像处理入门教程(七)图像形态学操作

    图像形态学主要从图像内提取分量信息,该分量信息通常对表达图像的特征具有重要意义.例如,在车牌号码识别中,能够使用形态学计算其重要特征信息,在进行识别时,只需对这些特征信息运算即可.图像形态学在目标视觉 ...

  2. 机器学习进阶-图像形态学操作-梯度运算 cv2.GRADIENT(梯度运算-膨胀图像-腐蚀后的图像)

    1.op = cv2.GRADIENT 用于梯度运算-膨胀图像-腐蚀后的图像 梯度运算:表示的是将膨胀以后的图像 - 腐蚀后的图像,获得了最终的边缘轮廓 代码: 第一步:读取pie图片 第二步:进行腐 ...

  3. 机器学习进阶-图像形态学操作-开运算与闭运算 1.cv2.morphologyEx(进行各类形态学变化) 2.op=cv2.MORPH_OPEN(先腐蚀后膨胀) 3.op=cv2.MORPH_CLOSE(先膨胀后腐蚀)

    1.cv2.morphologyEx(src, op, kernel) 进行各类形态学的变化 参数说明:src传入的图片,op进行变化的方式, kernel表示方框的大小 2.op =  cv2.MO ...

  4. 机器学习进阶-图像形态学操作-膨胀操作 1.cv2.dilate(进行膨胀操作)

    1.cv2.dilate(src, kernel, iteration) 参数说明: src表示输入的图片, kernel表示方框的大小, iteration表示迭代的次数 膨胀操作原理:存在一个ke ...

  5. 机器学习进阶-图像形态学操作-腐蚀操作 1.cv2.erode(进行腐蚀操作)

    1.cv2.erode(src, kernel, iteration) 参数说明:src表示的是输入图片,kernel表示的是方框的大小,iteration表示迭代的次数 腐蚀操作原理:存在一个ker ...

  6. opencv学习笔记(五)----图像的形态学操作

    图像的形态学操作有基本的腐蚀和膨胀操作和其余扩展形态学变换操作(高级操作)-----开运算,闭运算,礼帽(顶帽)操作,黑帽操作...(主要也是为了去噪声,改善图像) 形态学操作都是用于处理二值图像(其 ...

  7. 【OpenCV-Python】-图像形态学转化

    原文为段立辉翻译,感谢Linux公社此文档为自学转述,如有侵权请联系本人. 目标: • 学习不同的形态学操作,例如腐蚀,膨胀,开运算,闭运算等 • 学习的函数有:cv2.erode(),cv2.dil ...

  8. OpenCV中的图像形态学转换

    两个基本的形态学操作是腐蚀和膨胀.他们的变化构成了开运算,闭运算,梯度等.下面以这张图为例 1.腐蚀 这个操作会把前景物体的边界腐蚀掉. import cv2 import numpy as np i ...

  9. EasyPR--开发详解(4)形态学操作、尺寸验证、旋转等操作

    在上一篇深度分析与调优讨论中,我们介绍了高斯模糊,灰度化和Sobel算子.在本文中,会分析剩余的定位步骤. 根据前文的内容,车牌定位的功能还剩下如下的步骤,见下图中未涂灰的部分. 图1 车牌定位步骤 ...

  10. Atitit 图像处理—图像形态学(膨胀与腐蚀)

    Atitit 图像处理-图像形态学(膨胀与腐蚀) 1.1. 膨胀与腐蚀1 1.2. 图像处理之二值膨胀及应用2 1.3. 测试原理,可以给一个5*5pic,测试膨胀算法5 1.4. Photoshop ...

随机推荐

  1. .NET 高性能缓冲队列实现 BufferQueue

    目录 前言 适用场景 功能说明 使用示例 BufferQueue 内部设计概述 Topic 的隔离 Partition 的设计 对并发的支持 Partition 的动态扩容 Segment 的回收机制 ...

  2. 【Spring Data JPA】07 Specifications动态查询

    [前言说明] 针对CRUD种的查询,因为我们的查询总是具有各种各样的筛选条件 为了我们的程序能够更加适应筛选条件的变化,SpringDataJpa提供了Specifications这种解决方案 Spe ...

  3. agnostic在计算机领域的常用翻译 —— location-agnostic deployment option

    关于agnostic的翻译: 例子: NVIDIA OSMO scales workloads across distributed environments. For robotics worklo ...

  4. OneFlow是否真的实现了单机代码无侵害的运行在分布式集群上?

    答案: 不是,但也是. 严格意义上来说,不是. 因为技术OneFlow的代码,要从单机改到分布式,也需要改配置,需要给所有的变量设置具体的全局存储还是局部存储,如果局部存储又应该如何划分,等等,这些其 ...

  5. 拈花云科基于 Apache DolphinScheduler 在文旅业态下的实践

    作者|云科NearFar X Lab团队 左益.周志银.洪守伟.陈超.武超 一.导读 无锡拈花云科技服务有限公司(以下简称:拈花云科)是由拈花湾文旅和北京滴普科技共同孵化的文旅目的地数智化服务商.20 ...

  6. ABC304Ex Constrained Topological Sort 题解

    https://atcoder.jp/contests/abc304/tasks/abc304_h [CSP-S 2023] 种树后半部分的加强版 对于边 \((u,v)\),不妨令 $r[u]$ 对 ...

  7. 关于EF延时加载的面试题

    public async Task<ActionResult> GetData() { var data = (from leftdata in GetLeft() join rightd ...

  8. Win32 滚动条控件

    1.创建控件 HWND hScrollBar = ::CreateWindow( WC_SCROLLBAR,                           //控件类名 NULL,        ...

  9. nexus3.x批量上传Windows本地仓库jar包

    亲测可用!!! 传送门:https://blog.csdn.net/lihbps/article/details/104527652

  10. 安装vsftp服务器的时候遇到的问题

    安装vsftp服务器的时候遇到的问题 环境说明: 系统:阿里云centos7 面板:宝塔面板 问题描述: 在centos7中安装VSFTP的时候,使用命令行,ftp 然后输入用户名和密码,登陆之后,p ...