CF1862G 题解
首先这个查询操作很迷,考虑先化简查询操作。
不难发现由于每次是加上一个逆的等差序列,因此一次操作完每个数与它的前驱之差一定会减少,因此加上等差序列的次数就等于全局每个数与它的前驱之差最大值。
又因为会排序去重,所以最后剩下来的数一定是最开始的数一路加过来的,至此我们发现答案就是全局每个数与它的前驱之差最大值加上全局最大值。
考虑怎么维护这个东西,显然可以使用 FHQ treap 维护这件事,我们需要维护子树最大差,最小值,最大值就可以合并信息,在点修时先把原来的数删掉,在插入新的数。
时间复杂度 \(O(n \log n)\)。
#include<bits/stdc++.h>
using namespace std;
const int maxn = 2e5+114;
int n,q;
int a[maxn];
struct Node{
int val,ls,rs,w,mx,mi,ans;
}treap[maxn];
stack<int> brush;
int tot;
int rt;
int clone(int w){
int New;
if(brush.size()>0) New=brush.top(),brush.pop();
else New=++tot;
treap[New].val=rand();
treap[New].ls=0;
treap[New].rs=0;
treap[New].w=w;
treap[New].mi=treap[New].mx=w;
treap[New].ans=0;
return New;
}
inline void pushup(int cur){
treap[cur].ans=0;
treap[cur].ans=max(treap[treap[cur].ls].ans,treap[treap[cur].rs].ans);
if(treap[cur].ls!=0) treap[cur].ans=max(treap[cur].w-treap[treap[cur].ls].mx,treap[cur].ans);
if(treap[cur].rs!=0) treap[cur].ans=max(treap[treap[cur].rs].mi-treap[cur].w,treap[cur].ans);
treap[cur].mx=treap[cur].mi=treap[cur].w;
if(treap[cur].rs!=0) treap[cur].mx=treap[treap[cur].rs].mx;
if(treap[cur].ls!=0) treap[cur].mi=treap[treap[cur].ls].mi;
}
inline int merge(int x,int y){
if(!x||!y) return x+y;
if(treap[x].val<treap[y].val){
treap[x].rs=merge(treap[x].rs,y);
pushup(x);
return x;
}
else{
treap[y].ls=merge(x,treap[y].ls);
pushup(y);
return y;
}
}
inline void split(int cur,int x,int &l,int &r) {
if(cur==0){
l=r=0;
return ;
}
if(treap[cur].w>x){
r=cur;
split(treap[cur].ls,x,l,treap[cur].ls);
}
else{
l=cur;
split(treap[cur].rs,x,treap[cur].rs,r);
}
pushup(cur);
}
void dfs(int u){
if(u==0) return ;
dfs(treap[u].ls);
cout<<treap[u].w<<' '<<treap[u].mx<<' '<<treap[u].mi<<'\n';
dfs(treap[u].rs);
}
void insert(int w){
int x=0,y=0,z=0;
split(rt,w,x,z);
y=clone(w);
rt=merge(x,merge(y,z));
}
void erase(int w){
int x=0,y=0,z=0;
split(rt,w-1,x,y);
split(y,w,y,z);
brush.push(y);
y=merge(treap[y].ls,treap[y].rs);
rt=merge(x,merge(y,z));
}
void work(){
rt=tot=0;
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
insert(a[i]);
}
cin>>q;
while(q--){
int x,y;
cin>>x>>y;
erase(a[x]);
a[x]=y;
insert(a[x]);
cout<<treap[rt].mx+treap[rt].ans<<' ';
}
cout<<'\n';
}
int T;
int main(){
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin>>T;
while(T--)work();
}
CF1862G 题解的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
- JSOI2016R3 瞎BB题解
题意请看absi大爷的blog http://absi2011.is-programmer.com/posts/200920.html http://absi2011.is-programmer.co ...
随机推荐
- Ruby on Rails Active Record数据库常用操作
目录 创建 批量插入 判断是否存在 Ruby on Rails 日期查询方法 文档地址: https://freed.gitee.io/rails-guides/active_record_query ...
- ༺$Musique$༻
往期链接在文末 最近好喜欢听一些有年代感的歌啊. ~~头图~~ <$ On\ \And \ On $> Hold me close til I get up Time is barely ...
- C 语言编程 — 输入/输出与文件操作
目录 文章目录 目录 前文列表 输入/输出 scanf() 和 printf() getchar() 和 putchar() 文件操作 打开文件 关闭文件 写入文件 读取文件 二进制 I/O 函数 前 ...
- 4G EPS 中的小区选择
目录 文章目录 目录 前文列表 小区选择 RSRP(参考信号接收功率) RSRQ(参考信号接收质量) RSSI(接收信号强度指示) SINR(信号与干扰加噪声比) 前文列表 <4G EPS 中的 ...
- 西门子PLC设备如何接入AIRIOT物联网低代码平台 ?
西门子PLC设备广泛应用于工业控制领域,高性能和稳定是它最大的优势.下面我们要把西门子300 1200 1500 PLC设备连接到AIRIOT物联网低代码平台,具体操作如下所示: 西门子驱动配置(配套 ...
- flask-wtf和WTForms官网翻译详解
https://flask-wtf.readthedocs.io/en/stable/# https://wtforms.readthedocs.io/en/2.3.x/ 介绍: wtformflas ...
- C# 借助NPOI 完成 xls 转换为xlsx
背景:MinExcel开源类库,导数据的库,占用内存很低,通过io,不通过内存保存,不支持 xls格式的文件,支持csv和xlsx,所以要想使用这个库,就得把xls格式转换为xlsx.只复制了数据 合 ...
- Windows pyinstaller wxPython pyecharts无法正常显示问题
Windows pyinstaller wxPython pyecharts无法正常显示问题 最近遇到一个pyinstaller打包wxPython pyecharts无法显示的问题,pyechart ...
- HTML——文本域
在 HTML 中,使用 <textarea> 标签来表示多行文本框,又叫做文本域.与其它 <input> 标签不同,<textarea> 标签是单闭合标签,它包含起 ...
- Jenkins通过脚本进行自动发布
编写以下脚本: ------------------------------------------------------------------------------------- #!/bin ...