hdu2588 gcd 欧拉函数
GCD
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1567 Accepted Submission(s): 751
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
1 1
10 2
10000 72
6
260
并且gcd(x,N)>= M,结果为所有N/x的欧拉函数之和。
因为x是N的约数,所以gcd(x,N)=x >= M;
设y=N/x,y的欧拉函数为小于y且与y互质的数的个数。
设与y互质的的数为p1,p2,p3,…,p4
那么gcd(x* pi,N)= x >= M。
也就是说只要找出所有符合要求的y的欧拉函数之和就是答案了。
至于为何用ans+=Euler(n/i0而不是直接加n/i,这便是为了查重,防止出现重复
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long LL;
int kase=0;
LL Euler(LL n)
{
LL ans=n;
for(int i=2;i*i<=n;i++)
{
if(n%i==0)
{
ans-=ans/i;
while(n%i==0) n/=i;
}
}
if(n>1) ans-=ans/n;
return ans;
}
int main()
{
int t;
cin>>t;
__int64 n,m;
while(t--)
{
kase=0;
scanf("%I64d%I64d",&n,&m);
int num=(int)sqrt(n+0.5);
//cout<<num<<endl;
for(int i=1;i<num;i++)
{
if(n%i==0)
{
if(n/i>=m)
kase+=Euler(i);
if(i>=m)
kase+=Euler(n/i);
}
}
//cout<<kase<<endl;
// cout<<Euler(100)<<endl;
if(num*num==n&&num>=m) kase+=Euler(num);
cout<<kase<<endl;
}
return 0;
}
hdu2588 gcd 欧拉函数的更多相关文章
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
- POJ 2773 Happy 2006【GCD/欧拉函数】
根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include&l ...
- HDU 2588 GCD (欧拉函数)
GCD Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Submit Status De ...
- Bzoj-2818 Gcd 欧拉函数
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x ...
- BZOJ2818: Gcd 欧拉函数求前缀和
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 如果两个数的x,y最大公约数是z,那么x/z,y/z一定是互质的 然后找到所有的素数,然后用欧拉函数求一 ...
- HDU 1695 GCD 欧拉函数+容斥定理
输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1695 GCD (欧拉函数,容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- hdu 1695 GCD (欧拉函数+容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
随机推荐
- .net转php laraval框架学习系列(四) 项目实战---View
laravel的参考文档中view的讲解有些简单. 在实际项目开发中view的灵活性其实是非常大. 首先来看看laravel中的布局页 和asp.net mvc中有什么不同 <!DOCTYPE ...
- python比较两个列表
两个列表,随机产生4个不相等的数,计算一下,相同位置上的元素相等的个数,用k1表示. b列表中的元素在a列表中,但位置不相同,有多少个,用k2表示. 例如: a=[0, 4, 7, 3]b=[7, 1 ...
- Ubuntu常用命令与技巧
sudo apt-get install 软件名 安装软件命令 sudo nautilus 打开文件(有root权限) su root 切换到“root” ls 列出当前目录文件(不包括隐含文件) l ...
- Gradle Android客户端程序打包(基于gradle 1.12版本验证通过)
一.前言 android客户端开发进入尾声,负责SEO同事突然发给我一个涉及45个发布渠道的噩耗,之前只发布自有渠道的工作方式(手动修改参数打包)已经不满足需求,所以引入最近比较流行的gradle打包 ...
- 第8章 Android数据存储与IO——File存储
openFileOutput/openFileInput 这是android自带的两种解决方案.
- LINUX小技巧,如何在指定目录下搜索到含特定关键字的文件。
先找出文件,然后将文件作为输入,找具体关键字 find /etc -name "*" | xargs grep "Hello"
- LeetCode_Best Time to Buy and Sell Stock III
Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...
- C#进程间通信--API传递参数(SendMessage)
原文 C#进程间通信--API传递参数(SendMessage) 我们不仅可以传递系统已经定义好的消息,还可以传递自定义的消息(只需要发送消息端和接收消息端对自定义的消息值统一即可).下面的发送和接 ...
- CH Round #53 -GCD Path
描述 给定一张N个点的有向图,点i到点j有一条长度为 i/(gcd(i,j))的边.有Q个询问,每个询问包含两个数x和y,求x到y的最短距离. 输入格式 第一行包含两个用空格隔开的整数,N和Q. 接下 ...
- 【转】四步完成win7 ubuntu双系统安装(硬盘,无需光驱)
原文网址:http://ifeiyang.cn/archives/1835.html 适用环境: 理论上win7.vista系统32位或64位均可.ubuntu适用与10.X版本,且ubuntu-10 ...