Mahjong

Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2464 Accepted Submission(s): 522

Problem Description
Japanese Mahjong is a four-player game. The game needs four people to sit around a desk and play with a set of Mahjong tiles. A set of Mahjong tiles contains four copies of the tiles described next:

One to nine Man, which we use 1m to 9m to represent;

One to nine Sou, which we use 1s to 9s to represent;

One to nine Pin, which we use 1p to 9p to represent;

Character tiles, which are:Ton, Nan, Sei, Pei, Haku, Hatsu, Chun, which we use 1c to 7c to represent.

A winning state means a set of 14 tiles that normally contains a pair of same tiles (which we call "eyes") and four melds. A meld is formed by either three same tiles(1m, 1m, 1m or 2c, 2c, 2c for example) or three continuous non-character tiles(1m, 2m, 3m or 5s, 6s, 7s for example).

However, there are two special winning states that are different with the description above, which are:

"Chii Toitsu", which means 7 different pairs of tiles;

"Kokushi Muso", which means a set of tiles that contains all these tiles: 1m, 9m, 1p, 9p, 1s, 9s and all 7 character tiles. And the rest tile should also be one of the 13 tiles above.

And the game starts with four players receiving 13 tiles. In each round every player must draw one tile from the deck one by one. If he reaches a winning state with these 14 tiles, he can say "Tsu Mo" and win the game. Otherwise he should discard one of his 14 tiles. And if the tile he throws out can form a winning state with the 13 tiles of any other player, the player can say "Ron" and win the game.

Now the question is, given the 13 tiles you have, does there exist any tiles that can form a winning state with your tiles?

(Notes: Some of the pictures and descriptions above come from Wikipedia.)

 
Input
The input data begins with a integer T(1≤T≤20000). Next are T cases, each of which contains 13 tiles. The description of every tile is as above.
 
Output
For each cases, if there actually exists some tiles that can form a winning state with the 13 tiles given, print the number first and then print all those tiles in order as the description order of tiles above. Otherwise print a line "Nooten"(without quotation marks).
 
Sample Input
2
1s 2s 3s 2c 2c 2c 2p 3p 5m 6m 7m 1p 1p
1p 1p 2p 3p 4s 5s 6s 7c 7c 3s 3s 2m 2m
 
Sample Output
2 1p 4p
Nooten
 
Source
 
Recommend
zhoujiaqi2010
细节啊,细节,要注意,wrong了一天,就是那么一点点的小bug,这题其实,因为,麻将不多,我们把所有的麻将都枚举出来就可以了!
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std;
char charmap[34][3]={
"1m","2m","3m","4m","5m","6m","7m","8m","9m",
"1s","2s","3s","4s","5s","6s","7s","8s","9s",
"1p","2p","3p","4p","5p","6p","7p","8p","9p",
"1c","2c","3c","4c","5c","6c","7c"};
int num19[15]={0,8,9,17,18,26,27,28,29,30,31,32,33},num[34];
int prime[34],result[40],ans,all=33;char str[13];
int charchange(char ss[])
{
switch(ss[1])
{
case 'm':return ss[0]-'0'-1;
case 's':return 8+ss[0]-'0';
case 'p':return 17+ss[0]-'0';
case 'c':return 26+ss[0]-'0';
}
return -1;
}
int find1()
{
int i,j,k,cnt;
for(i=0;i<=all;i++)
{
if(num[i]>=2)
{
cnt=0;
for(j=0;j<=all;j++)
{
if(i!=j)prime[j]=num[j];
else prime[j]=num[j]-2;
}
for(j=0;j<=all;j++)
{
if(prime[j]>=3)
{
prime[j]-=3;
cnt++;
}
if(prime[j]>0)
{
k=prime[j];
if(j+2<27&&prime[j+1]>=k&&prime[j+2]>=k&&j/9==(j+2)/9)
{
cnt+=k;
prime[j]-=k,prime[j+1]-=k,prime[j+2]-=k;
}
}
}
if(cnt==4)
return 1;
}
}
return 0;
}
int find2()
{
int i;
for(i=0;i<=all;i++)
{
if(num[i]!=2&&num[i]!=0)
return 0;
}
return 1;
}
int find3()
{
int i,r=0;
for(i=0;i<13;i++)
{
if(num[num19[i]]==0)
return 0;
r+=num[num19[i]];
}
if(r==14)
return 1;
return 0;
}
int main()
{
int n,i,k,j;
scanf("%d",&n);
while(n--)
{
ans=-1;
memset(num,0,sizeof(num));
for(i=0;i<13;i++)
{
scanf("%s",str);
num[charchange(str)]++;
}
//for(i=0;i<=all;i++)
//printf("i%d %d i\n",i,num[i]);
for(i=0;i<=all;i++)
{
if(num[i]>=4)
continue;
num[i]++;
if(find1())
result[++ans]=i;
else if(find2())
result[++ans]=i;
else if(find3())
result[++ans]=i;
num[i]--;
}
if(ans>=0)
{
printf("%d",ans+1);
for(i=0;i<=ans;i++)
{
printf(" %c%c",charmap[result[i]][0],charmap[result[i]][1]);
}
printf("\n");
}
else
printf("Nooten\n");
}
return 0;
}

hdu4431 Mahjong的更多相关文章

  1. hdu4431 Mahjong 枚举搜索。。

    japanese麻将什么玩意..都没有豪华七对... 没什么难的 就是枚举搜索了 分三种类型的胡牌 f1是七对 f2是十三幺 f3是普通的胡牌 就先找一对 再找三个三个的 就是一直超时..在峰峰的指导 ...

  2. 2015暑假多校联合---Mahjong tree(树上DP 、深搜)

    题目链接 http://acm.split.hdu.edu.cn/showproblem.php?pid=5379 Problem Description Little sun is an artis ...

  3. UVa 11210 (DFS) Chinese Mahjong

    大白书第一章的例题,当时看起来很吃力,现如今A这道题的话怎么写都无所谓了. 思路很简单,就是枚举胡哪张牌,然后枚举一下将牌,剩下如果能找到4个顺子或者刻子就胡了. 由于粗心,34个字符串初始化写错,各 ...

  4. HDU 4431 Mahjong (DFS,暴力枚举,剪枝)

    题意:给定 13 张麻将牌,问你是不是“听”牌,如果是输出“听”哪张. 析:这个题,很明显的暴力,就是在原来的基础上再放上一张牌,看看是不是能胡,想法很简单,也比较好实现,结果就是TLE,一直TLE, ...

  5. uva 11210 Chinese Mahjong(暴力搜索)

    Chinese Mahjong Mahjong () is a game of Chinese origin usually played by four persons with tiles res ...

  6. Chinese Mahjong UVA - 11210 (暴力+回溯递归)

    思路:得到输入得到mj[]的各个牌的数量,还差最后一张牌.直接暴力枚举34张牌就可以了. 当假设得到最后一张牌,则得到了的牌看看是不是可以胡,如果可以胡的话,就假设正确.否者假设下一张牌. 关键还是如 ...

  7. Chinese Mahjong UVA - 11210 (DFS)

    先记录下每一种麻将出现的次数,然后枚举每一种可能得到的麻将,对于这个新的麻将牌,去判断可不可能胡,如果可以胡,就可以把这张牌输出出来. 因为eye只能有一张,所以这个是最好枚举的,就枚举每张牌成为ey ...

  8. UVa 11210 Chinese Mahjong (暴力,递归寻找)

    题意:这个题意.有点麻烦,就是说给定13张牌,让你求能“听”的牌.(具体的见原题) 原题链接: https://uva.onlinejudge.org/index.php?option=com_onl ...

  9. bzoj 1860: [Zjoi2006]Mahjong麻将 题解

    [原题] 1860: [Zjoi2006]Mahjong麻将 Time Limit: 1 Sec  Memory Limit: 64 MB Submit: 211  Solved: 122 [Subm ...

随机推荐

  1. Android抖动动画

    //CycleTimes动画重复的次数 public Animation shakeAnimation(int CycleTimes) { Animation translateAnimation = ...

  2. 本地机apache配置基于域名的虚拟主机详解

    1.打开apache的httpd.conf文件,找到# Virtual hosts#Include conf/extra/httpd-vhosts.conf这一段把Include conf/extra ...

  3. linux 内核头文件 linux kernel header

    概述:在进行有关系统软件的安装的时候(编译一个新的驱动,或者安装一个系统级别的测试工具,例如systemtap),经常需要重新编译内核,相应的问题往往与内核头文件有关.那么,什么是内核头文件,为什么需 ...

  4. vs2013内置IISExpress相关问题

    问题描述,以前做的程序迁移到vs2013后出现500.22问题. HTTP 错误 500.22 - Internal Server Error 检测到在集成的托管管道模式下不适用的 ASP.NET 设 ...

  5. 配置greenplum参数

    在进行一个greenplum安装之前需要进行配置一下相关的系统参数,否则很容易出现意想不到的错误. 1.修改系统参数 编辑 /etc/sysctl.conf ,以下是最小配置 kernel.shmma ...

  6. mysql not in、left join、IS NULL、NOT EXISTS 效率问题记录

    原文:mysql not in.left join.IS NULL.NOT EXISTS 效率问题记录 mysql not in.left join.IS NULL.NOT EXISTS 效率问题记录 ...

  7. 安装Tomcat指定JDK(转)

    一.应用实例 一般情况下一台服务器只跑一个业务,那么就直接配置一套环境,设置好Java环境变量即可.某些时候一台服务器上会安装多个业务,而且各个业务需要的JDK版本各不相同,或者为了使业务独立开来,需 ...

  8. Android常用动画Frame-By-Frame Animations的使用

    在Android的动画中有一种叫做Frame by Frame 的动画效果,就是跟Flash播放一样,是一帧一帧地显示,如果动画是连续并且有规律的话,就跟播放视频一样. 首先在drawable目录下添 ...

  9. JAVA爬虫 WebCollector

    JAVA爬虫 WebCollector 爬虫简介: WebCollector是一个无须配置.便于二次开发的JAVA爬虫框架(内核),它提供精简的的API,只需少量代码即可实现一个功能强大的爬虫. 爬虫 ...

  10. Sqlite ContentProvider Loader 上下文 对话框

    一.整体工程图 二.activity_main.xml <RelativeLayout xmlns:android="http://schemas.android.com/apk/re ...