Mahjong

Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2464 Accepted Submission(s): 522

Problem Description
Japanese Mahjong is a four-player game. The game needs four people to sit around a desk and play with a set of Mahjong tiles. A set of Mahjong tiles contains four copies of the tiles described next:

One to nine Man, which we use 1m to 9m to represent;

One to nine Sou, which we use 1s to 9s to represent;

One to nine Pin, which we use 1p to 9p to represent;

Character tiles, which are:Ton, Nan, Sei, Pei, Haku, Hatsu, Chun, which we use 1c to 7c to represent.

A winning state means a set of 14 tiles that normally contains a pair of same tiles (which we call "eyes") and four melds. A meld is formed by either three same tiles(1m, 1m, 1m or 2c, 2c, 2c for example) or three continuous non-character tiles(1m, 2m, 3m or 5s, 6s, 7s for example).

However, there are two special winning states that are different with the description above, which are:

"Chii Toitsu", which means 7 different pairs of tiles;

"Kokushi Muso", which means a set of tiles that contains all these tiles: 1m, 9m, 1p, 9p, 1s, 9s and all 7 character tiles. And the rest tile should also be one of the 13 tiles above.

And the game starts with four players receiving 13 tiles. In each round every player must draw one tile from the deck one by one. If he reaches a winning state with these 14 tiles, he can say "Tsu Mo" and win the game. Otherwise he should discard one of his 14 tiles. And if the tile he throws out can form a winning state with the 13 tiles of any other player, the player can say "Ron" and win the game.

Now the question is, given the 13 tiles you have, does there exist any tiles that can form a winning state with your tiles?

(Notes: Some of the pictures and descriptions above come from Wikipedia.)

 
Input
The input data begins with a integer T(1≤T≤20000). Next are T cases, each of which contains 13 tiles. The description of every tile is as above.
 
Output
For each cases, if there actually exists some tiles that can form a winning state with the 13 tiles given, print the number first and then print all those tiles in order as the description order of tiles above. Otherwise print a line "Nooten"(without quotation marks).
 
Sample Input
2
1s 2s 3s 2c 2c 2c 2p 3p 5m 6m 7m 1p 1p
1p 1p 2p 3p 4s 5s 6s 7c 7c 3s 3s 2m 2m
 
Sample Output
2 1p 4p
Nooten
 
Source
 
Recommend
zhoujiaqi2010
细节啊,细节,要注意,wrong了一天,就是那么一点点的小bug,这题其实,因为,麻将不多,我们把所有的麻将都枚举出来就可以了!
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std;
char charmap[34][3]={
"1m","2m","3m","4m","5m","6m","7m","8m","9m",
"1s","2s","3s","4s","5s","6s","7s","8s","9s",
"1p","2p","3p","4p","5p","6p","7p","8p","9p",
"1c","2c","3c","4c","5c","6c","7c"};
int num19[15]={0,8,9,17,18,26,27,28,29,30,31,32,33},num[34];
int prime[34],result[40],ans,all=33;char str[13];
int charchange(char ss[])
{
switch(ss[1])
{
case 'm':return ss[0]-'0'-1;
case 's':return 8+ss[0]-'0';
case 'p':return 17+ss[0]-'0';
case 'c':return 26+ss[0]-'0';
}
return -1;
}
int find1()
{
int i,j,k,cnt;
for(i=0;i<=all;i++)
{
if(num[i]>=2)
{
cnt=0;
for(j=0;j<=all;j++)
{
if(i!=j)prime[j]=num[j];
else prime[j]=num[j]-2;
}
for(j=0;j<=all;j++)
{
if(prime[j]>=3)
{
prime[j]-=3;
cnt++;
}
if(prime[j]>0)
{
k=prime[j];
if(j+2<27&&prime[j+1]>=k&&prime[j+2]>=k&&j/9==(j+2)/9)
{
cnt+=k;
prime[j]-=k,prime[j+1]-=k,prime[j+2]-=k;
}
}
}
if(cnt==4)
return 1;
}
}
return 0;
}
int find2()
{
int i;
for(i=0;i<=all;i++)
{
if(num[i]!=2&&num[i]!=0)
return 0;
}
return 1;
}
int find3()
{
int i,r=0;
for(i=0;i<13;i++)
{
if(num[num19[i]]==0)
return 0;
r+=num[num19[i]];
}
if(r==14)
return 1;
return 0;
}
int main()
{
int n,i,k,j;
scanf("%d",&n);
while(n--)
{
ans=-1;
memset(num,0,sizeof(num));
for(i=0;i<13;i++)
{
scanf("%s",str);
num[charchange(str)]++;
}
//for(i=0;i<=all;i++)
//printf("i%d %d i\n",i,num[i]);
for(i=0;i<=all;i++)
{
if(num[i]>=4)
continue;
num[i]++;
if(find1())
result[++ans]=i;
else if(find2())
result[++ans]=i;
else if(find3())
result[++ans]=i;
num[i]--;
}
if(ans>=0)
{
printf("%d",ans+1);
for(i=0;i<=ans;i++)
{
printf(" %c%c",charmap[result[i]][0],charmap[result[i]][1]);
}
printf("\n");
}
else
printf("Nooten\n");
}
return 0;
}

hdu4431 Mahjong的更多相关文章

  1. hdu4431 Mahjong 枚举搜索。。

    japanese麻将什么玩意..都没有豪华七对... 没什么难的 就是枚举搜索了 分三种类型的胡牌 f1是七对 f2是十三幺 f3是普通的胡牌 就先找一对 再找三个三个的 就是一直超时..在峰峰的指导 ...

  2. 2015暑假多校联合---Mahjong tree(树上DP 、深搜)

    题目链接 http://acm.split.hdu.edu.cn/showproblem.php?pid=5379 Problem Description Little sun is an artis ...

  3. UVa 11210 (DFS) Chinese Mahjong

    大白书第一章的例题,当时看起来很吃力,现如今A这道题的话怎么写都无所谓了. 思路很简单,就是枚举胡哪张牌,然后枚举一下将牌,剩下如果能找到4个顺子或者刻子就胡了. 由于粗心,34个字符串初始化写错,各 ...

  4. HDU 4431 Mahjong (DFS,暴力枚举,剪枝)

    题意:给定 13 张麻将牌,问你是不是“听”牌,如果是输出“听”哪张. 析:这个题,很明显的暴力,就是在原来的基础上再放上一张牌,看看是不是能胡,想法很简单,也比较好实现,结果就是TLE,一直TLE, ...

  5. uva 11210 Chinese Mahjong(暴力搜索)

    Chinese Mahjong Mahjong () is a game of Chinese origin usually played by four persons with tiles res ...

  6. Chinese Mahjong UVA - 11210 (暴力+回溯递归)

    思路:得到输入得到mj[]的各个牌的数量,还差最后一张牌.直接暴力枚举34张牌就可以了. 当假设得到最后一张牌,则得到了的牌看看是不是可以胡,如果可以胡的话,就假设正确.否者假设下一张牌. 关键还是如 ...

  7. Chinese Mahjong UVA - 11210 (DFS)

    先记录下每一种麻将出现的次数,然后枚举每一种可能得到的麻将,对于这个新的麻将牌,去判断可不可能胡,如果可以胡,就可以把这张牌输出出来. 因为eye只能有一张,所以这个是最好枚举的,就枚举每张牌成为ey ...

  8. UVa 11210 Chinese Mahjong (暴力,递归寻找)

    题意:这个题意.有点麻烦,就是说给定13张牌,让你求能“听”的牌.(具体的见原题) 原题链接: https://uva.onlinejudge.org/index.php?option=com_onl ...

  9. bzoj 1860: [Zjoi2006]Mahjong麻将 题解

    [原题] 1860: [Zjoi2006]Mahjong麻将 Time Limit: 1 Sec  Memory Limit: 64 MB Submit: 211  Solved: 122 [Subm ...

随机推荐

  1. [WPF疑难]如何禁用窗口上的关闭按钮

    原文 [WPF疑难]如何禁用窗口上的关闭按钮 [WPF疑难]如何禁用窗口上的关闭按钮                                           周银辉 哈哈,主要是调用Rem ...

  2. Ubuntu 13.04 安装使用clang

    其实很简单,就是用命令即可: apt-get install clang-3.2 clang-3.2-doc 主要说明一点,/usr/bin/c++链接原来指向g++,现在被改变了. $ ls /us ...

  3. 【Oracle】ORA-06550 PLS-00201

    ORA-06550 第1行,第7页 PLS-00201 必须声明标识符“PROC_****” 改错了首先检查连接的数据库库里面有没有这个存储过程.(检查是否配置对了数据库)

  4. 【论文阅读】Retrieving Similar Similar Styles to Parse Clothing(相关工作)

    发表于2015年5月PAMI 作者: Kota Yamaguchi, M.Hadi Kiapour, Luis E. Ortiz, Tamara L. Berg 相关工作: [服装检索Clothing ...

  5. [转]如何在本地安装 Homebrew

    作者:shede333 主页:http://my.oschina.net/shede333  官网:http://brew.sh/index_zh-cn.html 安装方式见 官网,在shell里执行 ...

  6. Java 重入锁 ReentrantLock

    本篇博客是转过来的. 但是略有改动感谢 http://my.oschina.net/noahxiao/blog/101558 摘要 从使用场景的角度出发来介绍对ReentrantLock的使用,相对来 ...

  7. QuartusII 中采用门级原语

    QuartusII  中采用门级原语 默认的是前面第一个 为output  后面所有信号为输入 图中的工程实现的是 一个二选一多路选择器

  8. Android 代码设置密码输入框内容的显示/隐藏

    //内容可见 mEtPassword.setTransformationMethod(HideReturnsTransformationMethod.getInstance()); //内容不可见 m ...

  9. 练习 jquery+Ajax+Json 绑定数据 分类: asp.net 练习 jquery+Ajax+Json 绑定数据 分类: asp.net

    练习 jquery+Ajax+Json 绑定数据

  10. Gradle构建Java Web应用:Servlet依赖与Tomcat插件(转)

    Gradle的官方tutorial介绍了构建Java Web应用的基本方法.不过在使用Servlet做上传的时候会碰到问题.这里分享下如何通过Servlet上传文件,以及如何使用Gradle来构建相应 ...