突然感觉刷完这一套专题后 码力有了质的飞跃,fighting 努力会有结果!

最大字段和是一个很经典的问题 O(n)算法

而对于最大子矩阵和

可以思考一个这样的想法

枚举上下边界i,j把i到j这一段的矩阵上下挤压成一个序列

对于i到j的最大子矩阵和问题=求这个序列的最大字段和

所以 复杂度为O(n^3)

而对于最大子长方体和 

依旧 先枚举上下边界 使问题变成最大子矩阵和

复杂度 O(n^5)

这种降维解题的思维方式 十分不错

具体看下面这个题

废料堆(Garbage Heap, UVa 10755)

有个长方体形状的废料堆,由A×B×C个废料块组成,每个废料块都有一个价值,可正可负。现在要在这个长方体上选择一个子长方体,使组成这个子长方体的废料块的价值之和最大。

【输入格式】

输入的第一行为数据组数TT≤15)。每组数据的第一行为3个整数A,
B,C(1≤A,B, C≤20)。接下来有A×B×C个整数,即各个废料块的价值,每个废料块的价值的绝对值不超过231。如果给每个废料块赋予一个空间坐标(一个角为(1,1,1),对角线的另一端为(A,B,C)),则这些废料块在输入文件中的出现顺序为:(1,1,1),(1,1,2), …, (1,1,C), (1,2,1), …,(1,2,C),
…, (1,B,C), …, (2,1,1), …, (2,B,C), …, (A,B,C)。

【输出格式】

对于每组数据,输出最大子长方体的价值和。

贴下刘汝佳老师的解释

还是老规矩,先想一个正确但低效的方法。枚举x,y,z的上下界x1, x2, y1, y2, z1, z2,然后比较这O(n6)个长方体的价值和,而每个长方体还需要O(n3)时间累加出价值和,所以总时间复杂度为O(n9),即使对于n≤20这样的规模,也太大了。
解决高维问题的常见思路是降维。让我们先来看看本题的二维情况:给定一个数字矩阵,求一个和最大的连续子矩阵。借用上题的思路,我们枚举上下边界y1和y2(规定x从左到右递增,y从上到下递增),则问题转化为了一维问题,如图1-32所示。 ? ? ? ? ?
? ? ? ? ?
-1 -2 8 3 1
-5 1 2 -7 -1
4 -2 10 -3 11
1 3 2 -4 5
9 -4 -2 5 6
? ? ? ? ?
图 1-32
注意,右图这个一维问题中的一个元素对应左图4个灰色格子的数之和。比如,(-1)+(-5)+1+9=4,(-2)+1+3+(-4)=-2等。
为了节省时间,这4个元素不能再用一重循环来累加得到,否则时间复杂度会变成O(n4)。我们得想办法让这些元素可以在O(1)时间内得到,这样,二维问题才能在O(n3)时间内解决。
解决方法仍然是前面曾多次使用的递推法:设sum(x,y1,y2)表示满足y1≤y≤y2的所有格子(x,y)里的数之和,则当y1<y2时,sum(x,y1,y2)=sum(x,y1,y2-1)+A[x][y2]。这样,可以事先在O(n3)时间内算出整个sum数组,则所有一维问题中的元素都可以在O(1)时间内得到,完整的二维问题在O(n3)时间内得到了解决。
上述两种方法都可以很方便地推广到三维情形,时间复杂度为O(n5)。因为三维情况下的n很小,因此前面所说的空间问题并不严重。下面是算法一的完整代码,它用三维数组S保存以(x,y,z)为“右下角”的长方体的元素和。代码效率不算高,但读者很容易把它推广到四维或更高维的情形。

简单易懂 就不多说了

贴代码:

	#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <ctime>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <string>
#define oo 0x13131313
const int maxn=22;
using namespace std;
int A,B,C;
long long STEP1[maxn][maxn][maxn];
long long ans=-9223372036854775100;
void input()
{
cin>>A>>B>>C;
ans=-9223372036854775100;
for(int i=1;i<=A;i++)
for(int j=1;j<=B;j++)
for(int k=1;k<=C;k++)
{
cin>>STEP1[i][j][k];
}
for(int i=1;i<=A;i++)
for(int j=1;j<=B;j++)
for(int k=1;k<=C;k++)
{
STEP1[i][j][k]+=STEP1[i-1][j][k];
}
}
long long STEP3[maxn];
long long STEP2[maxn][maxn];
void get_STEP3(int a,int b)
{
for(int i=1;i<=C;i++)
STEP3[i]=STEP2[b][i]-STEP2[a-1][i];
for(int i=1;i<=C;i++)
{
if(STEP3[i-1]>0)
STEP3[i]+=STEP3[i-1];
if(STEP3[i]>ans) ans=STEP3[i];
}
}
void get_STEP2(int a,int b)
{
for(int i=1;i<=B;i++)
for(int j=1;j<=C;j++)
STEP2[i][j]=STEP1[b][i][j]-STEP1[a-1][i][j];
for(int i=1;i<=B;i++)
for(int j=1;j<=C;j++)
STEP2[i][j]+=STEP2[i-1][j];
for(int i=1;i<=B;i++)
for(int j=i;j<=B;j++)
{
get_STEP3(i,j);
}
}
void solve()
{
for(int i=1;i<=A;i++)
for(int j=i;j<=A;j++)
{
get_STEP2(i,j);
}
}
int main()
{
//freopen("a.in","r",stdin);
//freopen("a.out","w",stdout);
int T;
cin>>T;
while(T--)
{
input();
solve();
cout<<ans<<endl;
if(T!=0) cout<<endl;
}
return 0;
}

【降维解法:最大字段和->最大子矩阵和->最终版最大子长方体和】【UVA10755】Garbage Heap的更多相关文章

  1. AI学习---特征工程【特征抽取、特征预处理、特征降维】

    学习框架 特征工程(Feature Engineering) 数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已 什么是特征工程: 帮助我们使得算法性能更好发挥性能而已 sklearn主 ...

  2. SQLSERVER查询整个数据库中某个特定值所在的表和字段的方法

    这几天有业务部门需要使用一个SAP B1老系统  中的报表,但是由于此报表没有加时间条件,导致一旦开始查询 就会导致B1系统异常退出.由于报表对应的SQL 是存在数据库中,所以想通过查找到这个报表的S ...

  3. 使用 SQL Server 的 uniqueidentifier 字段类型

    原文:使用 SQL Server 的 uniqueidentifier 字段类型 SQL Server 自 2008 版起引入了 uniqueidentifier 字段,它存储的是一个 UUID, 或 ...

  4. JavaScript 的新特性:类的 #private 字段

    这是什么,如何使用,为什么需要? 一边听“Noise Pollution” —— Portugal. The Man,一边阅读本文简直就是享受 JavaScript 标准的第二阶段(Stage 2)加 ...

  5. 八.Protobuf3更新消息类型(添加新的字段)

    Protobuf3 更新消息类型 如果现有的消息类型不满足你的所有需求——例如,你希望消息格式有一个额外的字段——但是你仍然希望使用用旧格式创建的代码,别担心!在不破坏任何现有代码的情况下更新消息类型 ...

  6. Django-choices字段值对应关系(性别)-MTV与MVC科普-Ajax发json格式与文件格式数据-contentType格式-Ajax搭配sweetalert实现删除确认弹窗-自定义分页器-批量插入-07

    目录 models 字段补充 choices 参数/字段(用的很多) MTV与MVC模型 科普 Ajax 发送 GET.POST 请求的几种常见方式 用 Ajax 做一个小案例 准备工作 动手用 Aj ...

  7. sqlserver 查询 字段

    SELECT * FROM INFORMATION_SCHEMA.columns WHERE TABLE_NAME='MenuInfo' select * from sysobjects where ...

  8. Language Guide (proto3) | proto3 语言指南(八)未知字段和任意类型

    未知字段和任意类型篇幅较少,因此将他们合并到本文进行描述. Unknown Fields - 未知字段 未知字段是格式良好的协议缓冲区序列化数据,表示解析器无法识别的字段.例如,当一个旧二进制代码解析 ...

  9. 爬虫总结_python

    import sqlite3 Python 的一个非常大的优点是很容易写很容易跑起来,缺点就是很多不那么著名的(甚至一些著名的)程序和库都不像 C 和 C++ 那边那样专业.可靠(当然这也有动态类型 ...

随机推荐

  1. Android开发 ADB server didn't ACK, failed to start daemon解决方案

    有时候在打开ddms的时候,会看到adb会报如题的错误,解决方案是打开任务管理器,(ctrl+shift+esc),然后关掉adb.exe的进程,重启eclipse就ok了. 还有许多无良商家开发的垃 ...

  2. 数据库的四种语言(DDL、DML、DCL、TCL)

    1.DDL (Data Definition Language )数据库定义语言 statements are used to define the database structure or sch ...

  3. SQLLoader2(导入EXCEL或csv格式的文件)

    一.EXCEL文件导入:1.首先将EXCEL文件另存为CSV格式文件--->用UltraEdit工具打开时可看到字段之间以逗号分隔. ,EMPNO,ENAME,JOB,MGR,HIREDATE, ...

  4. 19. Crontab

    一.Crontab 的使用 1.crontab 命令参数: -e   编辑该用户的计时器设置 -l 列出该用户的计时器设置 -r 删除该用户的计时器设置-u<用户名称> 指定要设定计时器的 ...

  5. ToggleButton --------- 按钮实现开关效果

    ToggleButton(开关按钮)是Android系统中比较简单的一个组件,是一个具有选中和未选择状态双状态的按钮,并且需要为不同的状态设置不同的显示文本 ,默认状态下 关. ToggleButto ...

  6. 如何用浏览器调试js代码

    按F12打开调试工具

  7. 使用DataReader读取数据

    List<User> allUsers = new List<User>(); SqlConnection conn = new SqlConnection(连接字符串); S ...

  8. SQL实现递归及存储过程中In()参数传递解决方案[转]

    SQL实现递归及存储过程中In()参数传递解决方案   1.SQL递归 在SQL Server中,我们可以利用表表达式来实现递归算法,一般用于阻止机构的加载及相关性处理.   -->实现: 假设 ...

  9. Django中文无法转换成latin-1编码的解决方案

    在Ubuntu上用Django做Web开发的时候遇到了中文保存到Cookie无法解析的问题,经过了下面几个步骤终于把问题解决了: 修改/usr/lib/python3.4/wsgiref/header ...

  10. 第八章I/O

    一.File的使用 ①.new File(String fileName);的意义 ②.获取当前文件夹下的所有文件 ③.获取当前文件夹时候过滤掉不许要的文件夹 ④.创建File文件,了解mkDir() ...