bzoj 1047 : [HAOI2007]理想的正方形 单调队列dp
1047: [HAOI2007]理想的正方形
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 2369 Solved: 1266
[Submit][Status][Discuss]
Description
有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小。
Input
第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非负整数,表示矩阵中相应位置上的数。每行相邻两数之间用一空格分隔。
Output
仅一个整数,为a*b矩阵中所有“n*n正方形区域中的最大整数和最小整数的差值”的最小值。
Sample Input
1 2 5 6
0 17 16 0
16 17 2 1
2 10 2 1
1 2 2 2
Sample Output
#include <iostream>
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <string>
#include <queue>
#include <stack>
#include <bitset>
using namespace std;
#define pb(x) push_back(x)
#define ll long long
#define mk(x, y) make_pair(x, y)
#define lson l, m, rt<<1
#define mem(a) memset(a, 0, sizeof(a))
#define rson m+1, r, rt<<1|1
#define mem1(a) memset(a, -1, sizeof(a))
#define mem2(a) memset(a, 0x3f, sizeof(a))
#define rep(i, n, a) for(int i = a; i<n; i++)
#define fi first
#define se second
typedef pair<int, int> pll;
const double PI = acos(-1.0);
const double eps = 1e-;
const int mod = 1e9+;
const int inf = ;
const int dir[][] = { {-, }, {, }, {, -}, {, } };
int n, m, k;
const int maxn = ;
int a[maxn][maxn], f[maxn][maxn], g[maxn][maxn], tmp[maxn][maxn];
deque <int> q;
void get_max() {
for(int i = ; i<=n; i++) {
for(int j = ; j<=m; j++) {
tmp[i][j] = a[i][j];
while(!q.empty()&&j-q.front()+>k)
q.pop_front();
if(!q.empty()) {
tmp[i][j] = max(tmp[i][j], a[i][q.front()]);
}
while(!q.empty() && a[i][j]>a[i][q.back()]) {
q.pop_back();
}
q.push_back(j);
}
while(!q.empty())
q.pop_back();
}
for(int j = ; j<=m; j++) {
for(int i = ; i<=n; i++) {
f[i][j] = tmp[i][j];
while(!q.empty()&&i-q.front()+>k)
q.pop_front();
if(!q.empty()) {
f[i][j] = max(f[i][j], tmp[q.front()][j]);
}
while(!q.empty() && tmp[i][j]>tmp[q.back()][j])
q.pop_back();
q.push_back(i);
}
while(!q.empty())
q.pop_back();
}
}
void get_min() {
for(int i = ; i<=n; i++) {
for(int j = ; j<=m; j++) {
tmp[i][j] = a[i][j];
while(!q.empty()&&j-q.front()+>k)
q.pop_front();
if(!q.empty()) {
tmp[i][j] = min(tmp[i][j], a[i][q.front()]);
}
while(!q.empty() && a[i][j]<a[i][q.back()]) {
q.pop_back();
}
q.push_back(j);
}
while(!q.empty())
q.pop_back();
}
for(int j = ; j<=m; j++) {
for(int i = ; i<=n; i++) {
g[i][j] = tmp[i][j];
while(!q.empty()&&i-q.front()+>k)
q.pop_front();
if(!q.empty()) {
g[i][j] = min(g[i][j], tmp[q.front()][j]);
}
while(!q.empty() && tmp[i][j]<tmp[q.back()][j])
q.pop_back();
q.push_back(i);
}
while(!q.empty())
q.pop_back();
}
}
int main()
{
cin>>n>>m>>k;
for(int i = ; i<=n; i++) {
for(int j = ; j<=m; j++) {
scanf("%d", &a[i][j]);
}
}
get_max();
get_min();
int ans = 2e9+;
for(int i = ; i<=n; i++) {
for(int j = ; j<=m; j++) {
if(i<k||j<k)
continue;
ans = min(ans, f[i][j]-g[i][j]);
}
}
cout<<ans<<endl;
return ;
}
bzoj 1047 : [HAOI2007]理想的正方形 单调队列dp的更多相关文章
- BZOJ 1047: [HAOI2007]理想的正方形( 单调队列 )
单调队列..先对每一行扫一次维护以每个点(x, y)为结尾的长度为n的最大最小值.然后再对每一列扫一次, 在之前的基础上维护(x, y)为结尾的长度为n的最大最小值. 时间复杂度O(ab) (话说还是 ...
- BZOJ 1047: [HAOI2007]理想的正方形 单调队列瞎搞
题意很简明吧? 枚举的矩形下边界和右端点即右下角,来确定矩形位置: 每一个纵列开一个单调队列,记录从 i-n+1 行到 i 行每列的最大值和最小值,矩形下边界向下推移的时候维护一下: 然后在记录的每一 ...
- BZOJ1047: [HAOI2007]理想的正方形 [单调队列]
1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2857 Solved: 1560[Submit][St ...
- P2216 [HAOI2007]理想的正方形 (单调队列)
题目链接:P2216 [HAOI2007]理想的正方形 题目描述 有一个 \(a\times b\)的整数组成的矩阵,现请你从中找出一个 \(n\times n\)的正方形区域,使得该区域所有数中的最 ...
- [BZOJ 1047] [HAOI2007] 理想的正方形 【单调队列】
题目链接:BZOJ - 1047 题目分析 使用单调队列在 O(n^2) 的时间内求出每个 n * n 正方形的最大值,最小值.然后就可以直接统计答案了. 横向有 a 个单调队列(代码中是 Q[1] ...
- bzoj 1047: [HAOI2007]理想的正方形【单调队列】
没有复杂结构甚至不长但是写起来就很想死的代码类型 原理非常简单,就是用先用单调队列处理出mn1[i][j]表示i行的j到j+k-1列的最小值,mx1[i][j]表示i行的j到j+k-1列的最大值 然后 ...
- BZOJ 1047: [HAOI2007]理想的正方形
题目 单调队列是个很神奇的东西,我以前在博客写过(吧) 我很佩服rank里那些排前几的大神,700ms做了时限10s的题,简直不能忍.(但是我还是不会写 我大概一年半没写单调队列,也有可能根本没有写过 ...
- Luogu 2216[HAOI2007]理想的正方形 - 单调队列
Solution 二维单调队列, 这个数组套起来看得我眼瞎... Code #include<cstdio> #include<algorithm> #include<c ...
- [HAOI2007] 理想的正方形 (单调队列)
题目链接 Solution MD,经过这道题,算是掌握单调队列了... 可以先预处理出点 \((i,j)\) 往上 \(n\) 的最大值和最小值. 然后再横着做一遍单调队列即可. Code #incl ...
随机推荐
- 汇编程序hello world
我们用C,C++,Java,C#等这样一些高级语言时一般会用到一个集成开发环境,啥编译链接之类的操作都集成到一起了,IDE给你自动完成了.随便点几下按钮就编译好运行起来了. 那假如是写了几行汇编代码该 ...
- HDU 4715 Difference Between Primes (打表)
Difference Between Primes Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/O ...
- Linux分区方案
创建三个分区 1./boot 启动分区 存放内核和启动程序 空间分配:100M 类型:ext4 2./swap 交换分区 虚 ...
- LitJson解析遇到的坑
今天在些项目的时候,遇到一个坑,现在跟大家分享一下 我遇到的错误是MissingMethodException: Method not found: 'Default constructor not ...
- B - 确定比赛名次
B - 确定比赛名次 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit S ...
- ECSHOP 开发总结
今天算是仔细学习ecshop 的第一天,实话说,如果不是任务紧,肯定不用这个东西.2013年之后都不再维护了.使用起来万一出什么BUG 就不好了.而且不是纯粹的MVC ,看代码也是怪怪的呢.但是都已经 ...
- Codeforces Gym10008E Harmonious Matrices(高斯消元)
[题目链接] http://codeforces.com/gym/100008/ [题目大意] 给出 一个n*m的矩阵,要求用0和1填满,使得每个位置和周围四格相加为偶数,要求1的数目尽量多. [题解 ...
- Hash 表详解(哈希表)
散列表(Hash table,也叫哈希表),是根据关键码值(Key value)而直接进行访问的数据结构.也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度.这个映射函数叫做散列 ...
- BF、KMP、BM、Sunday算法讲解
BF.KMP.BM.Sunday算法讲解 字串的定位操作通常称作串的模式匹配,是各种串处理系统中最重要的操作之一. 事实上也就是从一个母串中查找一模板串,判定是否存在. 现给出四种匹配算法包括BF(即 ...
- kohana(3.2)和gleez(1.1.5)的安装
*保证在kohanna的环境下安装gleez 一.配置虚拟主机(即添加端口:例如localhost:801) 以http://www.gleezcms.com为例 1: cd /etc/apache2 ...