提交了格灵深瞳的简历后,收到需要先进行一个简单的技术测试的通知,临时抱佛脚,先刷刷上面几道题:

题目要求

A zero-indexed array A consisting of N integers is given. An equilibrium index of this array is any integer P such that 0 ≤ P < N and the sum of elements of lower indices is equal to the sum of elements of higher indices, i.e.

A[0] + A[1] + ... + A[P−1] = A[P+1] + ... + A[N−2] + A[N−1].

Sum of zero elements is assumed to be equal to 0. This can happen if P = 0 or if P = N−1.

For example, consider the following array A consisting of N = 8 elements:

  A[0] = -1
A[1] = 3
A[2] = -4
A[3] = 5
A[4] = 1
A[5] = -6
A[6] = 2
A[7] = 1

P = 1 is an equilibrium index of this array, because:

  • A[0] = −1 = A[2] + A[3] + A[4] + A[5] + A[6] + A[7]

P = 3 is an equilibrium index of this array, because:

  • A[0] + A[1] + A[2] = −2 = A[4] + A[5] + A[6] + A[7]

P = 7 is also an equilibrium index, because:

  • A[0] + A[1] + A[2] + A[3] + A[4] + A[5] + A[6] = 0

and there are no elements with indices greater than 7.

P = 8 is not an equilibrium index, because it does not fulfill the condition 0 ≤ P < N.

Write a function:

int solution(int A[], int N);

that, given a zero-indexed array A consisting of N integers, returns any of its equilibrium indices. The function should return −1 if no equilibrium index exists.

For example, given array A shown above, the function may return 1, 3 or 7, as explained above.

Assume that:

  • N is an integer within the range [0..100,000];
  • each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].

Complexity:

  • expected worst-case time complexity is O(N);
  • expected worst-case space complexity is O(N), beyond input storage (not counting the storage required for input arguments).

Elements of input arrays can be modified.

代码:

int solution(vector<int> &A){
int sum = 0;
for(int i =0;i<A.size();i++){
sum = sum + A[i];
}
int for_sum = 0;
int result = 0;
for(int i =0;i<A.size();i++){
sum = sum-A[i];
if(sum == for_sum){
result = i;
break;
}
for_sum = for_sum + A[i];
}
return result;
}

  

Codility 1: equilibrium的更多相关文章

  1. Codility NumberSolitaire Solution

    1.题目: A game for one player is played on a board consisting of N consecutive squares, numbered from ...

  2. codility flags solution

    How to solve this HARD issue 1. Problem: A non-empty zero-indexed array A consisting of N integers i ...

  3. GenomicRangeQuery /codility/ preFix sums

    首先上题目: A DNA sequence can be represented as a string consisting of the letters A, C, G and T, which ...

  4. *[codility]Peaks

    https://codility.com/demo/take-sample-test/peaks http://blog.csdn.net/caopengcs/article/details/1749 ...

  5. *[codility]Country network

    https://codility.com/programmers/challenges/fluorum2014 http://www.51nod.com/onlineJudge/questionCod ...

  6. *[codility]AscendingPaths

    https://codility.com/programmers/challenges/magnesium2014 图形上的DP,先按照路径长度排序,然后依次遍历,状态是使用到当前路径为止的情况:每个 ...

  7. *[codility]MaxDoubleSliceSum

    https://codility.com/demo/take-sample-test/max_double_slice_sum 两个最大子段和相拼接,从前和从后都扫一遍.注意其中一段可以为0.还有最后 ...

  8. *[codility]Fish

    https://codility.com/demo/take-sample-test/fish 一开始习惯性使用单调栈,后来发现一个普通栈就可以了. #include <stack> us ...

  9. *[codility]CartesianSequence

    https://codility.com/programmers/challenges/upsilon2012 求笛卡尔树的高度,可以用单调栈来做. 维持一个单调递减的栈,每次进栈的时候记录下它之后有 ...

随机推荐

  1. 分布式拒绝服务攻击(DDoS)原理及防范【转】

    DDoS攻击概念 DoS的攻击方式有很多种,最基本的DoS攻击就是利用合理的服务请求来占用过多的服务资源,从而使合法用户无法得到服务的响应. DDoS攻击手段是在传统的DoS攻击基础之上产生的一类攻击 ...

  2. data按钮

    1.加载状态 通过按钮(Button)插件,您可以添加进一些交互,比如控制按钮状态,或者为其他组件(如工具栏)创建按钮组. 如需向按钮添加加载状态,只需要简单地向 button 元素添加 data-l ...

  3. SqlServer2008 数据库可疑

    今天遇到数据库可疑,以前都是直接删了还原,这次没有最新的备份文件,一起看看脚本怎么解决 --最好一句句执行,方便看到错误 USE MASTER GO --开启数据库选项"允许更新" ...

  4. iOS 自定义button

    UIButton默认的布局是左侧image,右侧title,如果想要改变image与title的frame,直接设置是不会有效果的.可以通过titleEdgeInsets.imageEdgeInset ...

  5. Js 自定义回调函数

    参考 http://mlxnle.iteye.com/blog/1670679 <!doctype html> <html lang="es"> <h ...

  6. iOS开发那些事儿(二)热补丁

    一.热补丁作用:修复导致崩溃的错误.替换/增加方法.替换原来的界面等等 二.实现手段:JSPatch (使用Objective-C Objective-C和JavaScript jspatch桥.你可 ...

  7. 关于JPA多数据源的部署persistence.xml文件配置以及对应实现类注入

      <?xml version="1.0" encoding="UTF-8"?> <persistence xmlns="http: ...

  8. 安全的PHP代码编写准则

    原文链接 绝不要信任外部数据或输入 关于 Web 应用程序安全性,必须认识到的第一件事是不应该信任外部数据.外部数据(outside data) 包括不是由程序员在 PHP 代码中直接输入的任何数据. ...

  9. 利用oxygen编辑并生成xml文件,并使用JAVA的JAXB技术完成xml的解析

    首先下载oxygen软件(Oxygen XML Editor),目前使用的是试用版(可以安装好软件以后get trial licence,获得免费使用30天的权限,当然这里鼓励大家用正版软件!!!) ...

  10. 如果不知道MySQL当前使用配置文件(my.cnf)的路径的解决方法

    如果不知道当前使用的配置文件的路径,可以尝试下面的操作: # which mysqld /usr/local/mysql/bin/mysqld # /usr/local/mysql/bin/mysql ...