POJ3729 Facer’s string 后缀数组
| Time Limit: 3000MS | Memory Limit: 65536K | |
| Total Submissions: 1783 | Accepted: 537 |
Description
Minifacer was very happy these days because he has learned the algorithm of KMP recently. Yet his elder brother, Hugefacer, thought that Minifacer needs a deeper understanding of this algorithm. Thus Hugefacer decided to play a game with his little brother to enhance his skills.
First, Hugefacer wrote down two strings S1 and S2. Then Minifacer tried to find a substring S3 of S1 which meets the following requirements: 1) S3 should have a length of k (which is a constant value); 2)S3 should also be the substring of S2. After several rounds, Hugefacer found that this game was too easy for his clever little brother, so he added another requirement: 3) the extended string of S3 should NOT be the substring of S2. Here the extended string of S3 is defined as S3 plus its succeed character in S1 (if S3 does not have a succeed character in S1, the extended string of S3 is S3 + ' ' which will never appear in S2). For example, let S1 be "ababc", if we select the substring from the first character to the second character as S3 (so S3 equals "ab"), its extended string should be "aba"; if we select the substring from the third character to the fourth character as S3, its extended string should be "abc"; if we select the substring from the fourth character to the fifth character as S3, its extended string should be "bc".
Since the difficult level of the game has been greatly increased after the third requirement was added, Minifacer was not able to win the game and he thought that maybe none of the substring would meet all the requirements. In order to prove that Minifacer was wrong, Hugefacer would like to write a program to compute number of substrings that meet the three demands (Note that two strings with same appearance but different positions in original string S1 should be count twice). Since Hugefacer do not like characters, he will use non-negative integers (range from 0 to 10000) instead.
Input
There are multiple test cases. Each case contains three lines: the first line contains three integers n, m and k where n represents the length of S1, m represents the length of S2 and k represents the length of substring; the second line contains string S1 and the third line contains string S2. Here 0 ≤ n, m ≤ 50000. Input ends with EOF.
Output
For each test case, output a number in a line stand for the total number of substrings that meet the three requirements.
Sample Input
5 5 2
1 2 1 2 3
1 2 3 4 5
5 5 3
1 2 1 2 3
1 2 3 4 5
Sample Output
2
1
大致意思: a串所有后缀中,有多少个后缀与b串的所有后缀的lcp的最大值==k。。
a b串先连接一下,,中间加一个不会出现的数值,,我选了inf。。
然后求sa,lcp数组。。
可以先求大于等于k的后缀个数 ,再减去大于等于k+1的个数就是答案了。。
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const double eps = 1e-;
const int maxn = 5e4+;
int s[maxn<<];
int len, k, sa[maxn << ], tmp[maxn << ], rank[maxn << ];
bool cmp(int i, int j)
{
if (rank[i] != rank[j])
return rank[i] < rank[j];
else
{
int x = (i + k <= len ? rank[i+k] : -);
int y = (j + k <= len ? rank[j+k] : -);
return x < y;
}
}
void build_sa()
{
for (int i = ; i <= len; i++)
{
sa[i] = i;
rank[i] = (i < len ? s[i] : -);
}
for (k = ; k <= len; k *= )
{
sort(sa, sa+len+,cmp);
tmp[sa[]] = ;
for (int i = ; i <= len; i++)
{
tmp[sa[i]] = tmp[sa[i-]] + (cmp(sa[i-], sa[i]) ? : );
}
for (int i = ; i <= len; i++)
rank[i] = tmp[i];
}
}
int lcp[maxn << ];
void get_lcp()
{
for (int i = ; i <= len; i++)
{
rank[sa[i]] = i;
}
int h = ;
lcp[] = ;
for (int i = ; i < len; i++)
{
int j = sa[rank[i]-];
if (h > )
h--;
for (; j+h < len && i+h < len; h++)
if (s[j+h] != s[i+h])
break;
lcp[rank[i]] = h;
}
}
int solve(int kk, int n)
{
int res = ;
for (int i = ; i <= len; i++)
{
if (lcp[i] >= kk)
{
int one = , two = ;
if (sa[i-] < n)
one++;
if (sa[i-] > n)
two++;
for (; i < len && lcp[i] >= kk; i++)
{
if (sa[i] < n)
one++;
if (sa[i] > n)
two++;
}
if (two)
res += one;
}
}
return res;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif
int n,m,kk;
while (~ scanf ("%d%d%d",&n,&m,&kk))
{
for (int i = ; i < n; i++)
{
scanf ("%d", s+i);
s[i]++;
}
s[n] = inf;
for (int i = n+; i < n++m; i++)
{
scanf ("%d", s+i);
s[i]++;
}
len = n + m + ;
build_sa();
get_lcp();
printf("%d\n",solve(kk,n) - solve(kk+,n));
}
return ;
}
POJ3729 Facer’s string 后缀数组的更多相关文章
- hdu 3553 Just a String (后缀数组)
hdu 3553 Just a String (后缀数组) 题意:很简单,问一个字符串的第k大的子串是谁. 解题思路:后缀数组.先预处理一遍,把能算的都算出来.将后缀按sa排序,假如我们知道答案在那个 ...
- hdu 6194 沈阳网络赛--string string string(后缀数组)
题目链接 Problem Description Uncle Mao is a wonderful ACMER. One day he met an easy problem, but Uncle M ...
- HDU 6194 string string string (后缀数组)
题意:给定一个字符串,问你它有多少个子串恰好出现 k 次. 析:后缀数组,先把height 数组处理出来,然后每次取 k 个进行分析,假设取的是 i ~ i+k-1,那么就有重复的,一个是 i-1 ~ ...
- Hackerrank--Ashton and String(后缀数组)
题目链接 Ashton appeared for a job interview and is asked the following question. Arrange all the distin ...
- hdu 5030 Rabbit's String(后缀数组&二分法)
Rabbit's String Time Limit: 40000/20000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- hdu-6194 string string string 后缀数组 出现恰好K次的串的数量
最少出现K次我们可以用Height数组的lcp来得出,而恰好出现K次,我们只要除去最少出现K+1次的lcp即可. #include <cstdio> #include <cstrin ...
- [Codechef CHSTR] Chef and String - 后缀数组
[Codechef CHSTR] Chef and String Description 每次询问 \(S\) 的子串中,选出 \(k\) 个相同子串的方案有多少种. Solution 本题要求不是很 ...
- HDU5008 Boring String Problem(后缀数组 + 二分 + 线段树)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5008 Description In this problem, you are given ...
- HDU5853 Jong Hyok and String(二分 + 后缀数组)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5853 Description Jong Hyok loves strings. One da ...
随机推荐
- linux vim 个性化设置(.vimrc)
set sw=4 set ts=4 set et set smarttab set smartindent set lbr set fo+=mB set sm set ...
- MVP模式 详解 案例
介绍 MVC: View:对应于布局文件 Model:业务逻辑和实体模型 Controllor:对应于Activity 实际上关于该布局文件中的数据绑定的操作,事件处理的代码都在Activity中,造 ...
- (转)java 23种设计模式
设计模式(Design Patterns) ——可复用面向对象软件的基础 设计模式(Design pattern)是一套被反复使用.多数人知晓的.经过分类编目的.代码设计经验的总结.使用设计模式是为了 ...
- 5、第5节课CSS补充和html 标签讲解20150924
1. DIV 隐藏 A: 隐藏之后不占位置 display:none; B:隐藏之后占位置 visibility:hidden; 2.DIV 排序 z-index:2; 默认是1,如果想DIV在上 ...
- 深入理解 CSS变形 transform(3d)
坐标轴 在了解透视之前,首先要先了解坐标轴.3D变形与2D变形最大的不同就在于其参考的坐标轴不同.2D变形的坐标轴是平面的,只存在x轴和y轴,而3D变形的坐标轴则是x.y.z三条轴组成的立体空间,x轴 ...
- CSS和CSS3中的伪元素和伪类(总结)
好多人伪类和伪元素分清楚,其实就是一句话,“伪类的效果可以通过添加一个实际的类来达到,而伪元素的效果则需要通过添加一个实际的元素才能达到”. CSS中伪类包括: :first-child :lang ...
- Remoting 的“传递的引用”理解
WCf是集大成者,具有其他微软的很多技术,其中分布式上很多借助于Remoting,所以研究一下Remoting有助于理解WCF 提到Remoting就不得不涉及到MarshalByRefObject这 ...
- DataGrid GridView 单页javascript 表头排序
JS代码如下: <script> var curObj; var shell = 1; function sortTable(L) { var start=new Date() var i ...
- java中保留几位小数
public class NumUtils { /** * 保留两位小数 * * @param d * @return */ public static String get2Wei(double d ...
- MSSQL 查询统计某状态出现的次数及累计时间
1.问题来源 最近客户需要统计某个设备,某状态,在某一个时间段内出现的次数,并计算累计出现的时间. 数据源如下: 现在如果要统计UPSCTSTA状态为D出现的次数(同一状态,连续出现的认为是一次),并 ...