A Simple Problem with Integers(线段树,区间更新)
| Time Limit: 5000MS | Memory Limit: 131072K | |
| Total Submissions: 83822 | Accepted: 25942 | |
| Case Time Limit: 2000MS | ||
Description
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000. The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000. Each of the next Q lines represents an operation. "C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000. "Q a b" means querying the sum of Aa, Aa+1, ... , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4
Sample Output
4
55
9
15
Hint
Source
题解:线段树区间更新模版,由于mid比较那块出问题了,错了好半天。。。还有就是注意左边的要是x-(x>>1),因为左边可能多一
代码:
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
#define mem(x,y) memset(x,y,sizeof(x))
#define SI(x) scanf("%d",&x)
#define SL(x) scanf("%lld",&x)
#define PI(x) printf("%d",x)
#define P_ printf(" ")
#define PL(x) printf("%lld",x)
typedef long long LL;
const int INF=0x3f3f3f3f;
#define ll root<<1
#define rr root<<1|1
#define lson ll,l,mid
#define rson rr,mid+1,r
#define S(x) tree[x].sum
#define L(x) tree[x].lazy
const int MAXN=100010;
LL ans=0;
struct Node{
LL lazy,sum;
};
Node tree[MAXN<<2]; void pushup(int root){
S(root)=S(ll)+S(rr);
}
void pushdown(int root,int x){
if(L(root)){
L(ll)+=L(root);
L(rr)+=L(root);
S(ll)+=L(root)*(x-(x>>1));//注意
S(rr)+=L(root)*(x>>1);
L(root)=0;
}
}
void build(int root,int l,int r){
int mid=(l+r)>>1;
L(root)=0;
if(l==r){
SL(S(root));
//printf("%d %d %lld\n",l,r,S(root));
return;
}
build(lson);
build(rson);
pushup(root);
}
void update(int root,int l,int r,int A,int B,int v){
int mid=(l+r)>>1;
if(l>=A&&r<=B){
L(root)+=v;//注意是+=
S(root)+=v*(r-l+1);
return;
}
pushdown(root,r-l+1);
if(mid>=A)update(lson,A,B,v);//注意
if(mid<B)update(rson,A,B,v);//注意
pushup(root);
}
void query(int root,int l,int r,int A,int B){
int mid=(l+r)>>1;
//printf("%d %d %lld\n",l,r,S(root));
// PI(A);P_;PI(B);
if(l>=A&&r<=B){
ans+=S(root);
//printf("%d %d %lld\n",l,r,S(root));
return;
}
pushdown(root,r-l+1);
if(mid>=A)query(lson,A,B);//
if(mid<B)query(rson,A,B);//
}
int main(){
int N,Q;
char s[2];
int A,B,v;
while(~scanf("%d%d",&N,&Q)){
build(1,1,N);
while(Q--){
scanf("%s",s);
if(s[0]=='Q'){
scanf("%d%d",&A,&B);
ans=0;
query(1,1,N,A,B);
printf("%lld\n",ans);
}
else{
scanf("%d%d%d",&A,&B,&v);
update(1,1,N,A,B,v);
}
}
}
return 0;
}
extern "C++"{
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long LL;
typedef unsigned u;
typedef unsigned long long ull;
#define mem(x,y) memset(x,y,sizeof(x))
void SI(double &x){scanf("%lf",&x);}
void SI(int &x){scanf("%d",&x);}
void SI(LL &x){scanf("%lld",&x);}
void SI(u &x){scanf("%u",&x);}
void SI(ull &x){scanf("%llu",&x);}
void SI(char *s){scanf("%s",s);}
void PI(int x){printf("%d",x);}
void PI(double x){printf("%lf",x);}
void PI(LL x){printf("%lld",x);}
void PI(u x){printf("%u",x);}
void PI(ull x){printf("%llu",x);}
void PI(char *s){printf("%s",s);}
#define NL puts("");
#define ll root<<1
#define rr root<<1|1
#define lson ll,l,mid
#define rson rr,mid+1,r
const int INF=0x3f3f3f3f;
const int MAXN=;
LL tree[MAXN << ];
LL lazy[MAXN << ];
}
void pushup(int root){
tree[root] = tree[ll] + tree[rr];
}
void pushdown(int root,int x){
if(lazy[root]){
lazy[ll] += lazy[root];
lazy[rr] += lazy[root];
// tree[ll]=lazy[root]*(mid-l+1);
// tree[rr]=lazy[root]*(r-mid);
tree[ll] += lazy[root] * (x - (x >> ));
tree[rr] += lazy[root] * (x >> );
lazy[root] = ;
}
}
void build(int root,int l,int r){
int mid = (l + r) >> ;
lazy[root] = ;
if(l == r){
SI(tree[root]);
return ;
}
build(lson);
build(rson);
pushup(root);
}
void update(int root,int l,int r,int L,int R,int C){
if(l >= L && r <= R){
tree[root] += (r - l + ) * C;
lazy[root] += C;
return ;
}
int mid = (l + r) >> ;
pushdown(root,r-l+);
if(mid >= L)
update(lson,L,R,C);
if(mid < R)
update(rson,L,R,C);
pushup(root);
}
LL query(int root,int l,int r,int L,int R){
int mid = (l + r) >> ;
if(l >= L && r <= R){
return tree[root];
}
pushdown(root,r-l+);
LL ans = ;
if(mid >= L)ans += query(lson,L,R);
if(mid < R)ans += query(rson,L,R);
return ans;
}
int main(){
//assert(false);
int N,M;
while(~scanf("%d%d",&N,&M)){
build(,,N);
char s[];
int l,r,c;
while(M--){
SI(s);
SI(l);SI(r);
if(s[]=='Q'){
PI(query(,,N,l,r)),NL
}
else{
SI(c);
update(,,N,l,r,c);
}
}
}
return ;
}
A Simple Problem with Integers(线段树,区间更新)的更多相关文章
- poj 3468 A Simple Problem with Integers (线段树区间更新求和lazy思想)
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 75541 ...
- (简单) POJ 3468 A Simple Problem with Integers , 线段树+区间更新。
Description You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. On ...
- A Simple Problem with Integers 线段树 区间更新 区间查询
Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 115624 Accepted: 35897 Case Time Lim ...
- [POJ] 3468 A Simple Problem with Integers [线段树区间更新求和]
A Simple Problem with Integers Description You have N integers, A1, A2, ... , AN. You need to deal ...
- POJ 3468A Simple Problem with Integers(线段树区间更新)
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 112228 ...
- poj 3468 A Simple Problem with Integers 线段树区间更新
id=3468">点击打开链接题目链接 A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072 ...
- POJ 3468 A Simple Problem with Integers(线段树,区间更新,区间求和)
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 67511 ...
- POJ 3468 A Simple Problem with Integers(线段树区间更新)
题目地址:POJ 3468 打了个篮球回来果然神经有点冲动. . 无脑的狂交了8次WA..竟然是更新的时候把r-l写成了l-r... 这题就是区间更新裸题. 区间更新就是加一个lazy标记,延迟标记, ...
- A Simple Problem with Integers(线段树区间更新复习,lazy数组的应用)-------------------蓝桥备战系列
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of op ...
- POJ 3468 A Simple Problem with Integers(线段树区间更新,模板题,求区间和)
#include <iostream> #include <stdio.h> #include <string.h> #define lson rt<< ...
随机推荐
- linux第七章《档案与目录管理》重点回顾
- 论山寨手机与Android联姻 【1】MTK亮相的历史背景
[1]MTK亮相的历史背景如果说1960年代是大型机(Mainframe)的时代,1970年代是小型机(Microcomputer)的时代,那么1980年代无疑是个人电脑(PC)的时代,而1990年代 ...
- POJ——字符串插入
2:字符串插入 查看 提交 统计 提问 总时间限制: 1000ms 内存限制: 65536kB 描述 有两个字符串str和substr,str的字符个数不超过10,substr的字符个数为3.( ...
- Struts 2.3.4.1完整示例
[系统环境]Windows 7 Ultimate 64 Bit [开发环境]JDK1.6.21,Tomcat6.0.35,MyEclipse10 [其他环境]Struts2.3.4.1 [项目描述]S ...
- 微软Code Hunt答案(00-05)——沉迷娱乐的我
昨天看到微软出的网游Code Hunt.o(∩_∩)o...哈哈,还不好好玩一吧,个人感觉不是一个模块比一个模块难的,Code Hunt是按功能划分.所以不要怕自己做不来.由于不同人特长不一样. 像A ...
- hdu 3068 最长回文(manachar求最长回文子串)
题目连接:hdu 3068 最长回文 解题思路:通过manachar算法求最长回文子串,如果用遍历的话绝对超时. #include <stdio.h> #include <strin ...
- CSS3属性text-overflow(省略符)实战开发详解
先看一下效果: 好了,看完了效果,现在正式开始今天的开发旅程吧! 首先我们先创建html页面,代码如下所示(红色文字即是我们Demo的主要内容): <!DOCTYPE html> ...
- Net常用命名空间和类介绍
一.基础命名空间 l System.Collections 包含了一些与集合相关的类型,比如列表,队列,位数组,哈希表和字典等. l System.IO 包含了一些数据流类型并提供了文件和目录同步 ...
- oracle 如何重置用户密码
- DataSetToList 和 DataTableTolist 转换
DataSetToList 及DataTableTolist经常使用,在此分享一下我的方法. DataSetToList 和 DataTableTolist 转换 DataSetToList 和 Da ...