R编程语言已经成为统计分析中的事实标准。但在这篇文章中,我将告诉你在Python中实现统计学概念会是如此容易。我要使用Python实现一些离散和连续的概率分布。虽然我不会讨论这些分布的数学细节,但我会以链接的方式给你一些学习这些统计学概念的好资料。在讨论这些概率分布之前,我想简单说说什么是随机变量(random variable)。随机变量是对一次试验结果的量化。

举个例子,一个表示抛硬币结果的随机变量可以表示成

 
 
 
 
 

Python

 
1
2
X = {1 如果正面朝上,
     2 如果反面朝上}

随机变量是一个变量,它取值于一组可能的值(离散或连续的),并服从某种随机性。随机变量的每个可能取值的都与一个概率相关联。随机变量的所有可能取值和与之相关联的概率就被称为概率分布(probability distributrion)

我鼓励大家仔细研究一下scipy.stats模块。

概率分布有两种类型:离散(discrete)概率分布和连续(continuous)概率分布。

离散概率分布也称为概率质量函数(probability mass function)。离散概率分布的例子有伯努利分布(Bernoulli distribution)、二项分布(binomial distribution)、泊松分布(Poisson distribution)和几何分布(geometric distribution)等。

连续概率分布也称为概率密度函数(probability density function),它们是具有连续取值(例如一条实线上的值)的函数。正态分布(normal distribution)、指数分布(exponential distribution)和β分布(beta distribution)等都属于连续概率分布。

若想了解更多关于离散和连续随机变量的知识,你可以观看可汗学院关于概率分布的视频

二项分布(Binomial Distribution)

服从二项分布的随机变量X表示在n个独立的是/非试验中成功的次数,其中每次试验的成功概率为p。

E(X) = np, Var(X) = np(1−p)

如果你想知道每个函数的原理,你可以在IPython笔记本中使用help file命令。 E(X)表示分布的期望或平均值。

键入stats.binom?了解二项分布函数binom的更多信息。

二项分布的例子:抛掷10次硬币,恰好两次正面朝上的概率是多少?

假设在该试验中正面朝上的概率为0.3,这意味着平均来说,我们可以期待有3次是硬币正面朝上的。我定义掷硬币的所有可能结果为k = np.arange(0,11):你可能观测到0次正面朝上、1次正面朝上,一直到10次正面朝上。我使用stats.binom.pmf计算每次观测的概率质量函数。它返回一个含有11个元素的列表(list),这些元素表示与每个观测相关联的概率值。

您可以使用.rvs函数模拟一个二项随机变量,其中参数size指定你要进行模拟的次数。我让Python返回10000个参数为n和p的二项式随机变量。我将输出这些随机变量的平均值和标准差,然后画出所有的随机变量的直方图。

泊松分布(Poisson Distribution)

一个服从泊松分布的随机变量X,表示在具有比率参数(rate parameter)λ的一段固定时间间隔内,事件发生的次数。参数λ告诉你该事件发生的比率。随机变量X的平均值和方差都是λ。

E(X) = λ, Var(X) = λ

泊松分布的例子:已知某路口发生事故的比率是每天2次,那么在此处一天内发生4次事故的概率是多少?

让我们考虑这个平均每天发生2起事故的例子。泊松分布的实现和二项分布有些类似,在泊松分布中我们需要指定比率参数。泊松分布的输出是一个数列,包含了发生0次、1次、2次,直到10次事故的概率。我用结果生成了以下图片。

你可以看到,事故次数的峰值在均值附近。平均来说,你可以预计事件发生的次数为λ。尝试不同的λ和n的值,然后看看分布的形状是怎么变化的。

现在我来模拟1000个服从泊松分布的随机变量。

正态分布(Normal Distribution)

正态分布是一种连续分布,其函数可以在实线上的任何地方取值。正态分布由两个参数描述:分布的平均值μ和方差σ2 。

E(X) = μ, Var(X) = σ2

正态分布的取值可以从负无穷到正无穷。你可以注意到,我用stats.norm.pdf得到正态分布的概率密度函数。

β分布(Beta Distribution)

β分布是一个取值在 [0, 1] 之间的连续分布,它由两个形态参数α和β的取值所刻画。

β分布的形状取决于α和β的值。贝叶斯分析中大量使用了β分布。

当你将参数α和β都设置为1时,该分布又被称为均匀分布(uniform distribution)。尝试不同的α和β取值,看看分布的形状是如何变化的。

指数分布(Exponential Distribution)

指数分布是一种连续概率分布,用于表示独立随机事件发生的时间间隔。比如旅客进入机场的时间间隔、打进客服中心电话的时间间隔、中文维基百科新条目出现的时间间隔等等。

我将参数λ设置为0.5,并将x的取值范围设置为 $[0, 15]$ 。

接着,我在指数分布下模拟1000个随机变量。scale参数表示λ的倒数。函数np.std中,参数ddof等于标准偏差除以 $n-1$ 的值。

结语(Conclusion)

概率分布就像盖房子的蓝图,而随机变量是对试验事件的总结。我建议你去看看哈佛大学数据科学课程的讲座,Joe Blitzstein教授给了一份摘要,包含了你所需要了解的关于统计模型和分布的全部。

如何在Python中实现这五类强大的概率分布的更多相关文章

  1. 关于如何在Python中使用静态、类或抽象方法的权威指南

    Python中方法的工作方式 方法是存储在类属性中的函数,你可以用下面这种方式声明和访问一个函数 >>> class Pizza(object): ... def __init__( ...

  2. 如何在Python中从零开始实现随机森林

    欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 决策树可能会受到高度变异的影响,使得结果对所使用的特定测试数据而言变得脆弱. 根据您的测试数据样本构建多个模型(称为套袋)可以减少这种差异,但是 ...

  3. 面试官问我:如何在 Python 中解析和修改 XML

    摘要:我们经常需要解析用不同语言编写的数据.Python提供了许多库来解析或拆分用其他语言编写的数据.在此 Python XML 解析器教程中,您将学习如何使用 Python 解析 XML. 本文分享 ...

  4. 非常易于理解‘类'与'对象’ 间 属性 引用关系,暨《Python 中的引用和类属性的初步理解》读后感

    关键字:名称,名称空间,引用,指针,指针类型的指针(即指向指针的指针) 我读完后的理解总结: 1. 我们知道,python中的变量的赋值操作,变量其实就是一个名称name,赋值就是将name引用到一个 ...

  5. python中如何统计一个类的实例化对象

    类中的静态变量 需要通过类名.静态变量名 来修改 :通过对象不能修改 python中如何统计一个类的实例化对象?? class Person: #静态变量count,用于记录类被实例化的次数 coun ...

  6. 如何在Python中快速画图——使用Jupyter notebook的魔法函数(magic function)matplotlib inline

    如何在Python中快速画图--使用Jupyter notebook的魔法函数(magic function)matplotlib inline 先展示一段相关的代码: #we test the ac ...

  7. 如何在Python中使用Linux epoll

    如何在Python中使用Linux epoll 内容 介绍 阻塞套接字编程示例 异步套接字和Linux epoll的好处 epoll的异步套接字编程示例 性能考量 源代码 介绍 从2.6版开始,Pyt ...

  8. 如何在Python 中使用UTF-8 编码 && Python 使用 注释,Python ,UTF-8 编码 , Python 注释

    如何在Python 中使用UTF-8 编码 && Python 使用 注释,Python ,UTF-8 编码 , Python  注释 PIP $ pip install beauti ...

  9. 如何在Python中加速信号处理

    如何在Python中加速信号处理 This post is the eighth installment of the series of articles on the RAPIDS ecosyst ...

随机推荐

  1. Linux DNS配置

    1.安装bind #安装bind yum install -y bind bind-chroot bind-utils 2.主配置文件 vi /etc/named.conf #修改监听为本机IP li ...

  2. [skill][gdb] gdb 多线程调试

    中文快速入门: http://coolshell.cn/articles/3643.html (关于多线程的部署说的并不太对) 进阶: 多进程相关概念: inferiors 是什么? http://m ...

  3. Linux流量监控工具 - iftop

    iftop工具简述 今天看到一流量监控工具,觉得不错,就在自家服务器上装了一下,记录一下,留以后之需: 在类Unix系统中可以使用top查看系统资源.进程.内存占用等信息.查看网络状态可以使用nets ...

  4. EasyUI树和Ztree树冲突问题

    1.今天做项目的时候出现了如下的错误. 报错:TypeError: $(...).tree is not a function 代码如下: 这是EasyUI的页面部分 $(function(){ $( ...

  5. Hibernate操作指南-搭建一个简单的示例(基于Java Persistence API JPA)

  6. Android Studio: Failed to sync Gradle project 'xxx' Error:Unable to start the daemon process: could not reserve enough space for object heap.

    创建项目的时候报错: Failed to sync Gradle project 'xxx' Error:Unable to start the daemon process: could not r ...

  7. (转)对比MS Test与NUnit Test框架

    前言: 项目中进行Unit Test时,肯定会用到框架,因为这样能够更快捷.方便的进行测试. .Net环境下的测试框架非常多,在这里只是对MS Test和NUnit Test进行一下比较, 因为这两个 ...

  8. iOS,iOS对Android数据互通的规则

    AppStore针对数据互通的规则:在AppStore上架的应用,苹果会按照3:7的比例抽取IAP( In-App Purchase)三成的收入,作为渠道费用 11.2    Apps utilizi ...

  9. APP测试要点

    APP测试的时候,建议让开发打好包APK和IPA安装包,测试人员自己安装应用,进行测试.在测试过程中需要注意的测试点如下: 1.安装和卸载 ●应用是否可以在IOS不同系统版本或android不同系统版 ...

  10. c#字符显示转换{0:d}

    C#:String.Format数字格式化输出 : int a = 12345678; //格式为sring输出// Label1.Text = string.Format("asdfads ...