Keras入门——(6)长短期记忆网络LSTM(三)
参考:
https://blog.csdn.net/u012735708/article/details/82769711
https://zybuluo.com/hanbingtao/note/581764
http://blog.sina.com.cn/s/blog_afc8730e0102xup1.html
https://blog.csdn.net/qq_30638831/article/details/80060045
执行代码:
import pandas as pd from datetime import datetime from matplotlib import pyplot from sklearn.preprocessing import LabelEncoder,MinMaxScaler from sklearn.metrics import mean_squared_error from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from numpy import concatenate from math import sqrt # load data def parse(x): return datetime.strptime(x, '%Y %m %d %H') def read_raw(): dataset = pd.read_csv('C:/Users/cf_pc/Documents/jupyter/data/PRSA_data_2010.1.1-2014.12.31.csv', parse_dates = [['year', 'month', 'day', 'hour']], index_col=0, date_parser=parse) dataset.drop('No', axis=1, inplace=True) # manually specify column names dataset.columns = ['pollution', 'dew', 'temp', 'press', 'wnd_dir', 'wnd_spd', 'snow', 'rain'] dataset.index.name = 'date' # mark all NA values with 0 dataset['pollution'].fillna(0, inplace=True) # drop the first 24 hours dataset = dataset[24:] # summarize first 5 rows print(dataset.head(5)) # save to file dataset.to_csv('C:/Users/cf_pc/Documents/jupyter/data/pollution.csv') def drow_pollution(): dataset = pd.read_csv('C:/Users/cf_pc/Documents/jupyter/data/pollution.csv', header=0, index_col=0) values = dataset.values # specify columns to plot groups = [0, 1, 2, 3, 5, 6, 7] i = 1 # plot each column pyplot.figure(figsize=(10,10)) for group in groups: pyplot.subplot(len(groups), 1, i) pyplot.plot(values[:, group]) pyplot.title(dataset.columns[group], y=0.5, loc='right') i += 1 pyplot.show() def series_to_supervised(data, n_in=1, n_out=1, dropnan=True): # convert series to supervised learning n_vars = 1 if type(data) is list else data.shape[1] df = pd.DataFrame(data) cols, names = list(), list() # input sequence (t-n, ... t-1) for i in range(n_in, 0, -1): cols.append(df.shift(i)) names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)] # forecast sequence (t, t+1, ... t+n) for i in range(0, n_out): cols.append(df.shift(-i)) if i == 0: names += [('var%d(t)' % (j+1)) for j in range(n_vars)] else: names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)] # put it all together agg = pd.concat(cols, axis=1) agg.columns = names # drop rows with NaN values if dropnan: agg.dropna(inplace=True) return agg def cs_to_sl(): # load dataset dataset = pd.read_csv('C:/Users/cf_pc/Documents/jupyter/data/pollution.csv', header=0, index_col=0) values = dataset.values # integer encode direction encoder = LabelEncoder() values[:,4] = encoder.fit_transform(values[:,4]) # ensure all data is float values = values.astype('float32') # normalize features scaler = MinMaxScaler(feature_range=(0, 1)) scaled = scaler.fit_transform(values) # frame as supervised learning reframed = series_to_supervised(scaled, 1, 1) # drop columns we don't want to predict reframed.drop(reframed.columns[[9,10,11,12,13,14,15]], axis=1, inplace=True) print(reframed.head()) return reframed,scaler def train_test(reframed): # split into train and test sets values = reframed.values n_train_hours = 365 * 24 train = values[:n_train_hours, :] test = values[n_train_hours:, :] # split into input and outputs train_X, train_y = train[:, :-1], train[:, -1] test_X, test_y = test[:, :-1], test[:, -1] # reshape input to be 3D [samples, timesteps, features] train_X = train_X.reshape((train_X.shape[0], 1, train_X.shape[1])) test_X = test_X.reshape((test_X.shape[0], 1, test_X.shape[1])) print(train_X.shape, train_y.shape, test_X.shape, test_y.shape) return train_X,train_y,test_X,test_y def fit_network(train_X,train_y,test_X,test_y,scaler): model = Sequential() model.add(LSTM(50, input_shape=(train_X.shape[1], train_X.shape[2]))) model.add(Dense(1)) model.compile(loss='mae', optimizer='adam') # fit network history = model.fit(train_X, train_y, epochs=50, batch_size=72, validation_data=(test_X, test_y), verbose=2, shuffle=False) # plot history pyplot.plot(history.history['loss'], label='train') pyplot.plot(history.history['val_loss'], label='test') pyplot.legend() pyplot.show() # make a prediction yhat = model.predict(test_X) test_X = test_X.reshape((test_X.shape[0], test_X.shape[2])) # invert scaling for forecast inv_yhat = concatenate((yhat, test_X[:, 1:]), axis=1) inv_yhat = scaler.inverse_transform(inv_yhat) inv_yhat = inv_yhat[:,0] # invert scaling for actual inv_y = scaler.inverse_transform(test_X) inv_y = inv_y[:,0] # calculate RMSE rmse = sqrt(mean_squared_error(inv_y, inv_yhat)) print('Test RMSE: %.3f' % rmse) if __name__ == '__main__': drow_pollution() reframed,scaler = cs_to_sl() train_X,train_y,test_X,test_y = train_test(reframed) fit_network(train_X,train_y,test_X,test_y,scaler)
返回信息:
var1(t-1) var2(t-1) var3(t-1) var4(t-1) var5(t-1) var6(t-1) \ 1 0.129779 0.352941 0.245902 0.527273 0.666667 0.002290 2 0.148893 0.367647 0.245902 0.527273 0.666667 0.003811 3 0.159960 0.426471 0.229508 0.545454 0.666667 0.005332 4 0.182093 0.485294 0.229508 0.563637 0.666667 0.008391 5 0.138833 0.485294 0.229508 0.563637 0.666667 0.009912 var7(t-1) var8(t-1) var1(t) 1 0.000000 0.0 0.148893 2 0.000000 0.0 0.159960 3 0.000000 0.0 0.182093 4 0.037037 0.0 0.138833 5 0.074074 0.0 0.109658 (8760, 1, 8) (8760,) (35039, 1, 8) (35039,) WARNING:tensorflow:From C:\3rd\Anaconda2\lib\site-packages\tensorflow\python\framework\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Colocations handled automatically by placer. WARNING:tensorflow:From C:\3rd\Anaconda2\lib\site-packages\tensorflow\python\ops\math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.cast instead. Train on 8760 samples, validate on 35039 samples Epoch 1/50 - 2s - loss: 0.0578 - val_loss: 0.0562 Epoch 2/50 - 1s - loss: 0.0413 - val_loss: 0.0563 Epoch 3/50 - 1s - loss: 0.0254 - val_loss: 0.0454 Epoch 4/50 - 1s - loss: 0.0179 - val_loss: 0.0388 Epoch 5/50 - 1s - loss: 0.0158 - val_loss: 0.0237 Epoch 6/50 - 1s - loss: 0.0149 - val_loss: 0.0175 Epoch 7/50 - 1s - loss: 0.0148 - val_loss: 0.0163 Epoch 8/50 - 1s - loss: 0.0147 - val_loss: 0.0160 Epoch 9/50 - 1s - loss: 0.0148 - val_loss: 0.0155 Epoch 10/50 - 1s - loss: 0.0147 - val_loss: 0.0151 Epoch 11/50 - 1s - loss: 0.0146 - val_loss: 0.0148 Epoch 12/50 - 1s - loss: 0.0147 - val_loss: 0.0145 Epoch 13/50 - 1s - loss: 0.0146 - val_loss: 0.0143 Epoch 14/50 - 1s - loss: 0.0146 - val_loss: 0.0143 Epoch 15/50 - 1s - loss: 0.0145 - val_loss: 0.0141 Epoch 16/50 - 1s - loss: 0.0145 - val_loss: 0.0144 Epoch 17/50 - 1s - loss: 0.0147 - val_loss: 0.0140 Epoch 18/50 - 1s - loss: 0.0145 - val_loss: 0.0140 Epoch 19/50 - 1s - loss: 0.0145 - val_loss: 0.0138 Epoch 20/50 - 1s - loss: 0.0145 - val_loss: 0.0138 Epoch 21/50 - 1s - loss: 0.0144 - val_loss: 0.0138 Epoch 22/50 - 1s - loss: 0.0145 - val_loss: 0.0138 Epoch 23/50 - 1s - loss: 0.0146 - val_loss: 0.0137 Epoch 24/50 - 1s - loss: 0.0144 - val_loss: 0.0137 Epoch 25/50 - 1s - loss: 0.0144 - val_loss: 0.0137 Epoch 26/50 - 1s - loss: 0.0144 - val_loss: 0.0136 Epoch 27/50 - 1s - loss: 0.0144 - val_loss: 0.0136 Epoch 28/50 - 1s - loss: 0.0144 - val_loss: 0.0136 Epoch 29/50 - 1s - loss: 0.0145 - val_loss: 0.0137 Epoch 30/50 - 1s - loss: 0.0145 - val_loss: 0.0136 Epoch 31/50 - 1s - loss: 0.0144 - val_loss: 0.0137 Epoch 32/50 - 1s - loss: 0.0144 - val_loss: 0.0136 Epoch 33/50 - 1s - loss: 0.0144 - val_loss: 0.0136 Epoch 34/50 - 1s - loss: 0.0145 - val_loss: 0.0136 Epoch 35/50 - 1s - loss: 0.0144 - val_loss: 0.0135 Epoch 36/50 - 1s - loss: 0.0144 - val_loss: 0.0135 Epoch 37/50 - 1s - loss: 0.0144 - val_loss: 0.0135 Epoch 38/50 - 1s - loss: 0.0144 - val_loss: 0.0135 Epoch 39/50 - 1s - loss: 0.0144 - val_loss: 0.0135 Epoch 40/50 - 1s - loss: 0.0144 - val_loss: 0.0135 Epoch 41/50 - 1s - loss: 0.0143 - val_loss: 0.0135 Epoch 42/50 - 1s - loss: 0.0144 - val_loss: 0.0135 Epoch 43/50 - 1s - loss: 0.0144 - val_loss: 0.0135 Epoch 44/50 - 1s - loss: 0.0144 - val_loss: 0.0135 Epoch 45/50 - 1s - loss: 0.0144 - val_loss: 0.0137 Epoch 46/50 - 1s - loss: 0.0144 - val_loss: 0.0136 Epoch 47/50 - 1s - loss: 0.0143 - val_loss: 0.0135 Epoch 48/50 - 1s - loss: 0.0144 - val_loss: 0.0136 Epoch 49/50 - 1s - loss: 0.0143 - val_loss: 0.0135 Epoch 50/50 - 1s - loss: 0.0144 - val_loss: 0.0134
Test RMSE: 4.401
参考:
https://www.cnblogs.com/tianrunzhi/p/7825671.html
https://www.cnblogs.com/king-lps/p/7846414.html
https://www.cnblogs.com/datablog/p/6127000.html
https://www.cnblogs.com/charlotte77/p/5622325.html
https://www.cnblogs.com/bawu/p/7701810.html
Keras入门——(6)长短期记忆网络LSTM(三)的更多相关文章
- 如何预测股票分析--长短期记忆网络(LSTM)
在上一篇中,我们回顾了先知的方法,但是在这个案例中表现也不是特别突出,今天介绍的是著名的l s t m算法,在时间序列中解决了传统r n n算法梯度消失问题的的它这一次还会有令人杰出的表现吗? 长短期 ...
- Keras入门——(7)长短期记忆网络LSTM(四)
数据准备:http://www.manythings.org/anki/cmn-eng.zip 源代码:https://github.com/pjgao/seq2seq_keras 参考:https: ...
- Keras入门——(5)长短期记忆网络LSTM(二)
参考: https://blog.csdn.net/zwqjoy/article/details/80493341 https://blog.csdn.net/u012735708/article/d ...
- Keras入门——(4)长短期记忆网络LSTM(一)
参考: https://blog.csdn.net/zwqjoy/article/details/80493341 https://blog.csdn.net/u012735708/article/d ...
- LSTM - 长短期记忆网络
循环神经网络(RNN) 人们不是每一秒都从头开始思考,就像你阅读本文时,不会从头去重新学习一个文字,人类的思维是有持续性的.传统的卷积神经网络没有记忆,不能解决这一个问题,循环神经网络(Recurre ...
- 递归神经网络之理解长短期记忆网络(LSTM NetWorks)(转载)
递归神经网络 人类并不是每时每刻都从头开始思考.正如你阅读这篇文章的时候,你是在理解前面词语的基础上来理解每个词.你不会丢弃所有已知的信息而从头开始思考.你的思想具有持续性. 传统的神经网络不能做到这 ...
- 理解长短期记忆网络(LSTM NetWorks)
转自:http://www.csdn.net/article/2015-11-25/2826323 原文链接:Understanding LSTM Networks(译者/刘翔宇 审校/赵屹华 责编/ ...
- LSTMs 长短期记忆网络系列
RNN的长期依赖问题 什么是长期依赖? 长期依赖是指当前系统的状态,可能受很长时间之前系统状态的影响,是RNN中无法解决的一个问题. 如果从(1) “ 这块冰糖味道真?”来预测下一个词,是很容易得出“ ...
- LSTM(Long Short-Term Memory)长短期记忆网络
1. 摘要 对于RNN解决了之前信息保存的问题,例如,对于阅读一篇文章,RNN网络可以借助前面提到的信息对当前的词进行判断和理解,这是传统的网络是不能做到的.但是,对于RNN网络存在长期依赖问题,比如 ...
随机推荐
- jmeter数据分析,压测实现
1.开始之前,先介绍下压测的一些基本插件:线程组常用分为三类:user thread , step thread ,ultimate thread : user thread :最通用的最原始的线程 ...
- Airless Bottle-Can Be Used On Any Cream Product
Airless Bottle and Airless Pump are very effective at containing your makeup products. Although ...
- 【安全运维】Vim的基本操作
i 插入模式 : 末行模式 a 光标后插入 A 切换行末 I 切换行首 o 换行 O 上一行 p 粘贴 u 撤销 yy 复制 4yy 复制四行 dd (剪切)删除一行 2dd (剪切)删除两行 D 剪 ...
- left join 、right join 和inner join之间的区别
SQL的left join .right join 和inner join之间的区别 left join(左联接) 返回包括左表中的所有记录和右表中联结字段相等的记录 right join(右联接) ...
- Redis注意点记录
场景:1主2从 1.不使用哨兵模式,则当主机宕机后,从机并不会自动切换到Master状态,仍旧是Slave,若主机重新恢复,则从机进行自动连接 2.使用哨兵模式后,主机宕机,从机会根据分配的权值在从机 ...
- UNICODE UTF编码方式解析
先明确几个概念 基础概念部分 1.字符编码方式CEF(Character Encoding Form) 对符号进行编码,便于处理与显示 常用的编码方式有 GB2312(汉字国标码 2字节) ASCII ...
- nginx、apache和tomcat之间的关系和区别
Apache/Nginx 应该叫做 HTTP Server,即安装后生成httpd服务. Tomcat 则是一个 Application Server,或者更准确的来说,是一个「Servlet/JSP ...
- oracle 基于时间错的 分区表
我们的zabbix 监控使用 oracle 作为存储, 因此,需要创建基于 基于时间戳的分区表,在此将操作过程记录如下 1. 创建,四个zabbix 最大的表的分区表 create table his ...
- LoadRunner的参数化
好久不用loadrunner,以前的东西又都还给百度了,今天心血来潮,把参数化搞了一下 Action() { web_url("WebTours", "URL=http: ...
- A股上市公司财报披露时间
一.上市公司年报披露时间:每年1月1日——4月30日. 二.上市公司中年报披露时间:每年7月1日——8月30日. 三.上市公司季报披露时间: 1季报:每年4月1日——4月30日. 2季报(中报):每年 ...