Keras入门——(6)长短期记忆网络LSTM(三)
参考:
https://blog.csdn.net/u012735708/article/details/82769711
https://zybuluo.com/hanbingtao/note/581764
http://blog.sina.com.cn/s/blog_afc8730e0102xup1.html
https://blog.csdn.net/qq_30638831/article/details/80060045
执行代码:
import pandas as pd
from datetime import datetime
from matplotlib import pyplot
from sklearn.preprocessing import LabelEncoder,MinMaxScaler
from sklearn.metrics import mean_squared_error
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from numpy import concatenate
from math import sqrt
# load data
def parse(x):
return datetime.strptime(x, '%Y %m %d %H')
def read_raw():
dataset = pd.read_csv('C:/Users/cf_pc/Documents/jupyter/data/PRSA_data_2010.1.1-2014.12.31.csv', parse_dates = [['year', 'month', 'day', 'hour']], index_col=0, date_parser=parse)
dataset.drop('No', axis=1, inplace=True)
# manually specify column names
dataset.columns = ['pollution', 'dew', 'temp', 'press', 'wnd_dir', 'wnd_spd', 'snow', 'rain']
dataset.index.name = 'date'
# mark all NA values with 0
dataset['pollution'].fillna(0, inplace=True)
# drop the first 24 hours
dataset = dataset[24:]
# summarize first 5 rows
print(dataset.head(5))
# save to file
dataset.to_csv('C:/Users/cf_pc/Documents/jupyter/data/pollution.csv')
def drow_pollution():
dataset = pd.read_csv('C:/Users/cf_pc/Documents/jupyter/data/pollution.csv', header=0, index_col=0)
values = dataset.values
# specify columns to plot
groups = [0, 1, 2, 3, 5, 6, 7]
i = 1
# plot each column
pyplot.figure(figsize=(10,10))
for group in groups:
pyplot.subplot(len(groups), 1, i)
pyplot.plot(values[:, group])
pyplot.title(dataset.columns[group], y=0.5, loc='right')
i += 1
pyplot.show()
def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):
# convert series to supervised learning
n_vars = 1 if type(data) is list else data.shape[1]
df = pd.DataFrame(data)
cols, names = list(), list()
# input sequence (t-n, ... t-1)
for i in range(n_in, 0, -1):
cols.append(df.shift(i))
names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)]
# forecast sequence (t, t+1, ... t+n)
for i in range(0, n_out):
cols.append(df.shift(-i))
if i == 0:
names += [('var%d(t)' % (j+1)) for j in range(n_vars)]
else:
names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)]
# put it all together
agg = pd.concat(cols, axis=1)
agg.columns = names
# drop rows with NaN values
if dropnan:
agg.dropna(inplace=True)
return agg
def cs_to_sl():
# load dataset
dataset = pd.read_csv('C:/Users/cf_pc/Documents/jupyter/data/pollution.csv', header=0, index_col=0)
values = dataset.values
# integer encode direction
encoder = LabelEncoder()
values[:,4] = encoder.fit_transform(values[:,4])
# ensure all data is float
values = values.astype('float32')
# normalize features
scaler = MinMaxScaler(feature_range=(0, 1))
scaled = scaler.fit_transform(values)
# frame as supervised learning
reframed = series_to_supervised(scaled, 1, 1)
# drop columns we don't want to predict
reframed.drop(reframed.columns[[9,10,11,12,13,14,15]], axis=1, inplace=True)
print(reframed.head())
return reframed,scaler
def train_test(reframed):
# split into train and test sets
values = reframed.values
n_train_hours = 365 * 24
train = values[:n_train_hours, :]
test = values[n_train_hours:, :]
# split into input and outputs
train_X, train_y = train[:, :-1], train[:, -1]
test_X, test_y = test[:, :-1], test[:, -1]
# reshape input to be 3D [samples, timesteps, features]
train_X = train_X.reshape((train_X.shape[0], 1, train_X.shape[1]))
test_X = test_X.reshape((test_X.shape[0], 1, test_X.shape[1]))
print(train_X.shape, train_y.shape, test_X.shape, test_y.shape)
return train_X,train_y,test_X,test_y
def fit_network(train_X,train_y,test_X,test_y,scaler):
model = Sequential()
model.add(LSTM(50, input_shape=(train_X.shape[1], train_X.shape[2])))
model.add(Dense(1))
model.compile(loss='mae', optimizer='adam')
# fit network
history = model.fit(train_X, train_y, epochs=50, batch_size=72, validation_data=(test_X, test_y), verbose=2, shuffle=False)
# plot history
pyplot.plot(history.history['loss'], label='train')
pyplot.plot(history.history['val_loss'], label='test')
pyplot.legend()
pyplot.show()
# make a prediction
yhat = model.predict(test_X)
test_X = test_X.reshape((test_X.shape[0], test_X.shape[2]))
# invert scaling for forecast
inv_yhat = concatenate((yhat, test_X[:, 1:]), axis=1)
inv_yhat = scaler.inverse_transform(inv_yhat)
inv_yhat = inv_yhat[:,0]
# invert scaling for actual
inv_y = scaler.inverse_transform(test_X)
inv_y = inv_y[:,0]
# calculate RMSE
rmse = sqrt(mean_squared_error(inv_y, inv_yhat))
print('Test RMSE: %.3f' % rmse)
if __name__ == '__main__':
drow_pollution()
reframed,scaler = cs_to_sl()
train_X,train_y,test_X,test_y = train_test(reframed)
fit_network(train_X,train_y,test_X,test_y,scaler)
返回信息:

var1(t-1) var2(t-1) var3(t-1) var4(t-1) var5(t-1) var6(t-1) \ 1 0.129779 0.352941 0.245902 0.527273 0.666667 0.002290 2 0.148893 0.367647 0.245902 0.527273 0.666667 0.003811 3 0.159960 0.426471 0.229508 0.545454 0.666667 0.005332 4 0.182093 0.485294 0.229508 0.563637 0.666667 0.008391 5 0.138833 0.485294 0.229508 0.563637 0.666667 0.009912 var7(t-1) var8(t-1) var1(t) 1 0.000000 0.0 0.148893 2 0.000000 0.0 0.159960 3 0.000000 0.0 0.182093 4 0.037037 0.0 0.138833 5 0.074074 0.0 0.109658 (8760, 1, 8) (8760,) (35039, 1, 8) (35039,) WARNING:tensorflow:From C:\3rd\Anaconda2\lib\site-packages\tensorflow\python\framework\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Colocations handled automatically by placer. WARNING:tensorflow:From C:\3rd\Anaconda2\lib\site-packages\tensorflow\python\ops\math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.cast instead. Train on 8760 samples, validate on 35039 samples Epoch 1/50 - 2s - loss: 0.0578 - val_loss: 0.0562 Epoch 2/50 - 1s - loss: 0.0413 - val_loss: 0.0563 Epoch 3/50 - 1s - loss: 0.0254 - val_loss: 0.0454 Epoch 4/50 - 1s - loss: 0.0179 - val_loss: 0.0388 Epoch 5/50 - 1s - loss: 0.0158 - val_loss: 0.0237 Epoch 6/50 - 1s - loss: 0.0149 - val_loss: 0.0175 Epoch 7/50 - 1s - loss: 0.0148 - val_loss: 0.0163 Epoch 8/50 - 1s - loss: 0.0147 - val_loss: 0.0160 Epoch 9/50 - 1s - loss: 0.0148 - val_loss: 0.0155 Epoch 10/50 - 1s - loss: 0.0147 - val_loss: 0.0151 Epoch 11/50 - 1s - loss: 0.0146 - val_loss: 0.0148 Epoch 12/50 - 1s - loss: 0.0147 - val_loss: 0.0145 Epoch 13/50 - 1s - loss: 0.0146 - val_loss: 0.0143 Epoch 14/50 - 1s - loss: 0.0146 - val_loss: 0.0143 Epoch 15/50 - 1s - loss: 0.0145 - val_loss: 0.0141 Epoch 16/50 - 1s - loss: 0.0145 - val_loss: 0.0144 Epoch 17/50 - 1s - loss: 0.0147 - val_loss: 0.0140 Epoch 18/50 - 1s - loss: 0.0145 - val_loss: 0.0140 Epoch 19/50 - 1s - loss: 0.0145 - val_loss: 0.0138 Epoch 20/50 - 1s - loss: 0.0145 - val_loss: 0.0138 Epoch 21/50 - 1s - loss: 0.0144 - val_loss: 0.0138 Epoch 22/50 - 1s - loss: 0.0145 - val_loss: 0.0138 Epoch 23/50 - 1s - loss: 0.0146 - val_loss: 0.0137 Epoch 24/50 - 1s - loss: 0.0144 - val_loss: 0.0137 Epoch 25/50 - 1s - loss: 0.0144 - val_loss: 0.0137 Epoch 26/50 - 1s - loss: 0.0144 - val_loss: 0.0136 Epoch 27/50 - 1s - loss: 0.0144 - val_loss: 0.0136 Epoch 28/50 - 1s - loss: 0.0144 - val_loss: 0.0136 Epoch 29/50 - 1s - loss: 0.0145 - val_loss: 0.0137 Epoch 30/50 - 1s - loss: 0.0145 - val_loss: 0.0136 Epoch 31/50 - 1s - loss: 0.0144 - val_loss: 0.0137 Epoch 32/50 - 1s - loss: 0.0144 - val_loss: 0.0136 Epoch 33/50 - 1s - loss: 0.0144 - val_loss: 0.0136 Epoch 34/50 - 1s - loss: 0.0145 - val_loss: 0.0136 Epoch 35/50 - 1s - loss: 0.0144 - val_loss: 0.0135 Epoch 36/50 - 1s - loss: 0.0144 - val_loss: 0.0135 Epoch 37/50 - 1s - loss: 0.0144 - val_loss: 0.0135 Epoch 38/50 - 1s - loss: 0.0144 - val_loss: 0.0135 Epoch 39/50 - 1s - loss: 0.0144 - val_loss: 0.0135 Epoch 40/50 - 1s - loss: 0.0144 - val_loss: 0.0135 Epoch 41/50 - 1s - loss: 0.0143 - val_loss: 0.0135 Epoch 42/50 - 1s - loss: 0.0144 - val_loss: 0.0135 Epoch 43/50 - 1s - loss: 0.0144 - val_loss: 0.0135 Epoch 44/50 - 1s - loss: 0.0144 - val_loss: 0.0135 Epoch 45/50 - 1s - loss: 0.0144 - val_loss: 0.0137 Epoch 46/50 - 1s - loss: 0.0144 - val_loss: 0.0136 Epoch 47/50 - 1s - loss: 0.0143 - val_loss: 0.0135 Epoch 48/50 - 1s - loss: 0.0144 - val_loss: 0.0136 Epoch 49/50 - 1s - loss: 0.0143 - val_loss: 0.0135 Epoch 50/50 - 1s - loss: 0.0144 - val_loss: 0.0134

Test RMSE: 4.401
参考:
https://www.cnblogs.com/tianrunzhi/p/7825671.html
https://www.cnblogs.com/king-lps/p/7846414.html
https://www.cnblogs.com/datablog/p/6127000.html
https://www.cnblogs.com/charlotte77/p/5622325.html
https://www.cnblogs.com/bawu/p/7701810.html
Keras入门——(6)长短期记忆网络LSTM(三)的更多相关文章
- 如何预测股票分析--长短期记忆网络(LSTM)
在上一篇中,我们回顾了先知的方法,但是在这个案例中表现也不是特别突出,今天介绍的是著名的l s t m算法,在时间序列中解决了传统r n n算法梯度消失问题的的它这一次还会有令人杰出的表现吗? 长短期 ...
- Keras入门——(7)长短期记忆网络LSTM(四)
数据准备:http://www.manythings.org/anki/cmn-eng.zip 源代码:https://github.com/pjgao/seq2seq_keras 参考:https: ...
- Keras入门——(5)长短期记忆网络LSTM(二)
参考: https://blog.csdn.net/zwqjoy/article/details/80493341 https://blog.csdn.net/u012735708/article/d ...
- Keras入门——(4)长短期记忆网络LSTM(一)
参考: https://blog.csdn.net/zwqjoy/article/details/80493341 https://blog.csdn.net/u012735708/article/d ...
- LSTM - 长短期记忆网络
循环神经网络(RNN) 人们不是每一秒都从头开始思考,就像你阅读本文时,不会从头去重新学习一个文字,人类的思维是有持续性的.传统的卷积神经网络没有记忆,不能解决这一个问题,循环神经网络(Recurre ...
- 递归神经网络之理解长短期记忆网络(LSTM NetWorks)(转载)
递归神经网络 人类并不是每时每刻都从头开始思考.正如你阅读这篇文章的时候,你是在理解前面词语的基础上来理解每个词.你不会丢弃所有已知的信息而从头开始思考.你的思想具有持续性. 传统的神经网络不能做到这 ...
- 理解长短期记忆网络(LSTM NetWorks)
转自:http://www.csdn.net/article/2015-11-25/2826323 原文链接:Understanding LSTM Networks(译者/刘翔宇 审校/赵屹华 责编/ ...
- LSTMs 长短期记忆网络系列
RNN的长期依赖问题 什么是长期依赖? 长期依赖是指当前系统的状态,可能受很长时间之前系统状态的影响,是RNN中无法解决的一个问题. 如果从(1) “ 这块冰糖味道真?”来预测下一个词,是很容易得出“ ...
- LSTM(Long Short-Term Memory)长短期记忆网络
1. 摘要 对于RNN解决了之前信息保存的问题,例如,对于阅读一篇文章,RNN网络可以借助前面提到的信息对当前的词进行判断和理解,这是传统的网络是不能做到的.但是,对于RNN网络存在长期依赖问题,比如 ...
随机推荐
- QWidget::setLayout: Attempting to set QLayout "" on xxx "", which already has a layout
QLayout是Qt应用开发中一个非常重要的组件,然而平时使用的时候不小心经常会发现控制台有类似如下的警告: QWidget::setLayout: Attempting to set QLayout ...
- 从 0 到 1:Apache APISIX 的 Apache 之路
2019 年 12 月 14 日,又拍云联合 Apache APISIX 社区举办 API 网关与高性能服务最佳实践丨Open Talk 广州站活动,本次活动,邀请了来自Apache APISIX.又 ...
- Bugku-CTF社工篇之王晓明的日记
- numpy中的max()函数
1.ndarray.max([int axis]) 函数功能:求ndarray中指定维度的最大值,默认求所有值的最大值. axis=0:求各column的最大值 axis=1:求各row的最大值
- cssdiv设置高宽百分比不起作用的问题
div等元素设置宽高百分比都是基于包含他的块级对象的百分比高度,所以必须先设置包含它的块级对象高度与宽度,但是光设置body是不起作用的,必须同时设置html和body. 要使用百分比设置div宽 ...
- Js 类继承 extends
html 及 js 代码 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&q ...
- spring boot 配置时区差别
前提 数据库时区:GMT+8 show variables like '%time_zone%'; 本机电脑时区: 情景一.不指定时区 传递的参数映射到Data不指定时区,连接数据库不指定时区,保存时 ...
- 如何删除 AppStore 中的恶意评论 iOS
AppStore 中的评论,对于产品的形象影响很大.如果评论榜中出现了恶意评论,会对产品形象影响很大,当然这些差评有可能是用户的真实反馈,需要产品设计人员做好产品设计,满足客户的需求.另外也可能是竞争 ...
- jquery中 $(xxx).each() 和 $.each()的区别,以及enter键一键登录
1.$().each 在dom处理上面用的较多.如果页面有多个input标签类型为text,对于这时用$().each来处理多个text,例如: $("input[type=’text’]& ...
- Java 笔试题
有一些还是存在问题,欢迎大家一起探讨. 在Java类中,使用以下( )声明语句来定义公有的int型常量MAX. A. public int MAX = 100; B. final int MAX = ...