欧几里得算法:

\[gcd(a,b)=gcd(b,a\bmod b)
\]

证明:

显然(大雾)

扩展欧几里得及证明:

为解决一个形如

\[ax+by=c
\]

的方程。

根据裴蜀定理,当且仅当

\[gcd(a,b)|c
\]

时方程有解。

然后解这个方程。。。

我觉得大概就是:

我们设

\[ax_1+by_1=gcd(a,b)
\]

\[bx_2+(a\bmod b) y_2=gcd(b,a\bmod b)
\]

根据欧几里得以及\(a\bmod b=a-\lfloor a/b\rfloor\)有

\[ax_1+by_1=bx_2+(a-\lfloor a/b\rfloor)y_2
\]

\[ax_1+by_1=ay_2+bx_2-\lfloor a/b\rfloor y_2
\]

根据恒等定理 (?)得:

\[x1=y2,y1=x2-\lfloor \frac{a}{b} \rfloor *y2
\]

然后我们知道,\(gcd(a,b)|c\)。

那么我们算出\(ax+by=gcd(a,b)\)的答案来之后,只要把他乘上\(c/gcd(a,b)\)就好啦。

反正我知道代码哼唧

Code


void exgcd(int a, int b, int &x, int &y)
{
if(b == 0)
{
x = 1;y = 0;
return;
}
exgcd(b,a%b,y,x);
y-=a/b*x;
//计算ax+by=gcd(a,b)的值
}

Gcd&Exgcd的更多相关文章

  1. Gcd&Exgcd算法学习小记

    Preface 对于许多数论问题,都需要涉及到Gcd,求解Gcd,常常使用欧几里得算法,以前也只是背下来,没有真正了解并证明过. 对于许多求解问题,可以列出贝祖方程:ax+by=Gcd(a,b),用E ...

  2. gcd&&exgcd&&斐蜀定理

    gcd就是求a和b最大公约数,一般方法就是递推.不多说,上代码. 一.迭代法 int gcd(int m, int n) { ) { int c = n % m; n = m; m = c; } re ...

  3. 读入 并查集 gcd/exgcd 高精度 快速幂

    ios_base::sync_with_stdio(); cin.tie(); ], nxt[MAXM << ], Head[MAXN], ed = ; inline void added ...

  4. 【数论】如何证明gcd/exgcd

    我恨数论 因为打这篇的时候以为a|b是a是b的倍数,但是懒得改了,索性定义 a|b 为 a是b的倍数 咳咳,那么进入正题,如何证明gcd,也就是 gcd(a,b) = gcd(b,a%b)? 首先,设 ...

  5. gcd && exgcd算法

    目录 欧几里德算法与扩展欧几里德算法 1.欧几里德算法 2.扩展欧几里德算法 欧几里德算法与扩展欧几里德算法 1.欧几里德算法 #include<bits/stdc++.h> using ...

  6. 约数,gcd,exgcd.

    很多题都是要求出什么最大公约数或者最小公倍数什么的,也有一些题目是和约数个数有关的,所以需要总结一下. 首先最大公约数和最小公倍数怎么求呢? 当然是观察法了,对于一些很聪明的孩纸他们一般随便一看就秒出 ...

  7. gcd, exgcd的证明

  8. 数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho

    数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p ...

  9. 扩展欧几里得(exgcd)与同余详解

    exgcd入门以及同余基础 gcd,欧几里得的智慧结晶,信息竞赛的重要算法,数论的...(编不下去了 讲exgcd之前,我们先普及一下同余的性质: 若,那么 若,,且p1,p2互质, 有了这三个式子, ...

随机推荐

  1. 线段树——I hate it

    [问题描述]     很多学校流行一种比较的习惯.老师们很喜欢询问,从某某到某某当中,分数最高的是多少.这让很多学生很反感.    不管你喜不喜欢,现在需要你做的是,就是按照老师的要求,写一个程序,模 ...

  2. POJ-2891 Strange Way to Express Integers(拓展中国剩余定理)

    放一个写的不错的博客:https://www.cnblogs.com/zwfymqz/p/8425731.html POJ好像不能用__int128. #include <iostream> ...

  3. 吴裕雄 Bootstrap 前端框架开发——简例

    <!DOCTYPE html> <html> <head> <title>Bootstrap 模板</title> <meta cha ...

  4. mysql数据库关系表设计原则

    三范式https://blog.csdn.net/qq_36432666/article/details/78934073 https://kb.cnblogs.com/page/138526/ ht ...

  5. hbase(待完善)

    1. 应用 <1>  hbase解决海量图片存储 <2>

  6. 【转】django 三件套(render,redirect,HttpResponse)

    Django基础必备三件套**: HttpResponse 内部传入一个字符串参数,返回给浏览器. from django.shortcuts import HttpResponse def inde ...

  7. 安装pytorch

    安装cpu版本的 conda install pytorch-cpu torchvision-cpu -c pytorch 安装gpu版本的 conda install pytorch torchvi ...

  8. c++ 查重+排序函数

    输入 第一行n.第二行有n个元素. 输出 查重排序后的元素 样例: 输入: 5 1 1 2 3 4 输出: 1 2 3 4 unique的作用是“去掉”容器中相邻元素的重复元素 注意:用unique只 ...

  9. [原]用SQL比较两张结构完全相同的表数据

    前几天面试遇到一个比较有意思的问题,就是有两张结构完全相同的表A和B,但是这两张表属于不同的业务流程,经过一段时间后发现两张表的数据不能完全匹配,有可能A比B多,也可能B比A多,或者两种可能同时存在, ...

  10. Linux vim中方向键变成字母的问题

    使用Ubuntu Desktop 18.04 时 发现 vim 在编辑模式的时候,方向键变成了字母ABCD. 原因: Ubuntu预装的是vim tiny版本,安装vim full版本即可解决. 1. ...