PAT Advanced 1135 Is It A Red-Black Tree (30) [红⿊树]
题目
There is a kind of balanced binary search tree named red-black tree in the data structure. It has the following 5 properties:
(1) Every node is either red or black.
(2) The root is black.
(3) Every leaf (NULL) is black.
(4) If a node is red, then both its children are black.
(5) For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.
For example, the tree in Figure 1 is a red-black tree, while the ones in Figure 2 and 3 are not. For each given binary search tree, you are supposed to tell if it is a legal red-black tree.
Input Specification:
Each input file contains several test cases. The first line gives a positive integer K (≤30) which is the total number of cases. For each case, the first line gives a positive integer N (≤30), the total number of nodes in the binary tree. The second line gives the preorder traversal sequence of the tree. While all the keys in a tree are positive integers, we use negative signs to represent red nodes. All the numbers in a line are separated by a space. The sample input cases correspond to the trees shown in Figure 1, 2 and 3.
Output Specification:
For each test case, print in a line “Yes” if the given tree is a red-black tree, or “No” if not.
Sample Input:
39
7 -2 1 5 -4 -11 8 14 -15
9
11 -2 1 -7 5 -4 8 14 -15
8
10 -7 5 -6 8 15 -11 17
Sample Output:
Yes
No
No
题目分析
已知二叉查找树前序序列,判断其是否为红黑树(红节点用负数表示,黑节点用整数表示)
解题思路
- 前序序列建树(根节点大于等于左子树所有节点,小于右子树所有节点)或者依次插入建树
- 判断是否为红黑树
2.1 判断根节点是否为黑色
2.2 判断每个节点到其子树叶子节点的黑色结点数相同
2.3 判断红色节点的左右子节点都为黑色
Code
Code 01
#include <iostream>
#include <vector>
using namespace std;
struct node {
int v;
node * f;
node * r;
node (){}
node (int _v):v(_v){
f=r=NULL;
}
};
vector<int> pre;
// 前序建树
node * create(int preL,int preR){
if(preL>preR)return NULL;
node * root = new node(pre[preL]);
int k=preL+1;
while(k<preR&&abs(pre[k])<=abs(pre[preL]))k++;//找第一个大于根节点的值
root->f=create(preL+1,k-1);
root->r=create(k,preR);
return root;
}
// 判断红色节点的两个孩子是否都是黑色节点
bool judge1(node * root) {
if(root==NULL)return true;
if(root->v<0) {
if(root->f!=NULL&&root->f->v<0)return false;
if(root->r!=NULL&&root->r->v<0)return false;
}
return judge1(root->f)&&judge1(root->r);
}
// 获取当前节点高度(高度指:从当前节点到其子树的叶子节点的黑色结点数)
int getNum(node * root) {
if(root==NULL)return 1;
int f = getNum(root->f);
int r = getNum(root->r);
return root->v>0?max(f,r)+1:max(f,r);
}
// 判断每个节点到其子树的叶子节点的黑色节点数相同
bool judge2(node * root) {
if(root==NULL) return true;
int f= getNum(root->f);
int r= getNum(root->r);
if(f!=r)return false;
return judge2(root->f)&&judge2(root->r);
}
int main(int argc,char * argv[]) {
int k,n;
scanf("%d",&k);
for(int i=0; i<k; i++) {
scanf("%d",&n);
pre.clear();
pre.resize(n);
for(int j=0; j<n; j++) {
scanf("%d",&pre[j]);
}
node * root=create(0,n-1);
if(root->v<0||judge1(root)==false||judge2(root)==false) {
printf("No\n");
}else printf("Yes\n");
}
return 0;
}
Code 02
#include <iostream>
using namespace std;
struct node {
int v;
node * f;
node * r;
node (){}
node (int _v):v(_v){
f=r=NULL;
}
};
// 前序建树
void insert(node * &root,int v) {
if(root==NULL) {
root=new node(v);
return;
}
if(abs(v)<=abs(root->v))
insert(root->f, v);
else
insert(root->r,v);
}
// 判断红色节点的两个孩子是否都是黑色节点
bool judge1(node * root) {
if(root==NULL)return true;
if(root->v<0) {
if(root->f!=NULL&&root->f->v<0)return false;
if(root->r!=NULL&&root->r->v<0)return false;
}
return judge1(root->f)&&judge1(root->r);
}
// 获取当前节点高度(高度指:从当前节点到其子树的叶子节点的黑色结点数)
int getNum(node * root) {
if(root==NULL)return 1;
int f = getNum(root->f);
int r = getNum(root->r);
return root->v>0?max(f,r)+1:max(f,r);
}
// 判断每个节点到其子树的叶子节点的黑色节点数相同
bool judge2(node * root) {
if(root==NULL) return true;
int f= getNum(root->f);
int r= getNum(root->r);
if(f!=r)return false;
return judge2(root->f)&&judge2(root->r);
}
int main(int argc,char * argv[]) {
int k,n;
scanf("%d",&k);
for(int i=0; i<k; i++) {
scanf("%d",&n);
int nds[n];
node * root=NULL;
for(int j=0; j<n; j++) {
scanf("%d",&nds[j]);
insert(root,nds[j]);
}
if(root->v<0||judge1(root)==false||judge2(root)==false) {
printf("No\n");
}else printf("Yes\n");
}
return 0;
}
PAT Advanced 1135 Is It A Red-Black Tree (30) [红⿊树]的更多相关文章
- PAT Advanced 1123 Is It a Complete AVL Tree (30) [AVL树]
题目 An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child ...
- PAT (Advanced Level) 1099. Build A Binary Search Tree (30)
预处理每个节点左子树有多少个点. 然后确定值得时候递归下去就可以了. #include<cstdio> #include<cstring> #include<cmath& ...
- PAT (Advanced Level) 1115. Counting Nodes in a BST (30)
简单题.统计一下即可. #include<cstdio> #include<cstring> #include<cmath> #include<vector& ...
- PAT (Advanced Level) 1087. All Roads Lead to Rome (30)
暴力DFS. #include<cstdio> #include<cstring> #include<cmath> #include<vector> # ...
- PAT Advanced 1043 Is It a Binary Search Tree (25) [⼆叉查找树BST]
题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...
- PAT Advanced 1094 The Largest Generation (25) [BFS,DFS,树的遍历]
题目 A family hierarchy is usually presented by a pedigree tree where all the nodes on the same level ...
- Red Black Tree(红黑树)
(修改于 2018-05-06 15:53:22 还差删除维护操作.层序遍历没完成.维护操作没完成不想写层序遍历怎么办...) 今天下午完成了红黑树的插入的维护操作,但删除的维护操作还没有解决,删除的 ...
- PAT甲级1123 Is It a Complete AVL Tree【AVL树】
题目:https://pintia.cn/problem-sets/994805342720868352/problems/994805351302414336 题意: 给定n个树,依次插入一棵AVL ...
- PAT甲级题解-1123. Is It a Complete AVL Tree (30)-AVL树+满二叉树
博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6806292.html特别不喜欢那些随便转载别人的原创文章又不给 ...
随机推荐
- Numpy使用大全(python矩阵相关运算大全)-Python数据分析基础2
//2019.07.10python数据分析基础——numpy(数据结构基础) import numpy as np: 1.python数据分析主要的功能实现模块包含以下六个方面:(1)numpy—— ...
- Mac安装软件提示破损
安装提示破损 zhong终端输入 sudo spctl --master-disable 就可以顺利打开啦
- node - TypeError: argument handler must be a function 路由报错的原因
原因 : 路由一定要暴露给外部使用 var express = require('express') var router = express.Router() router.get('/', ...
- Python序列内单双引的问题——未解决
在学习python基础的时候,遇到这样一个问题: tuple=(2,2.3,"yeah",5.6,False)list=[True,5,"smile"] 这样输 ...
- JPA#复杂查询#自定义查询
编写自定义SQL基于下面信息:1. SpringData JPA 在为Repository接口生成实现的时候,会查找是否有 "接口名称"+"Impl"的类,如果 ...
- InvalidOperationException: Cannot create a DbSet for 'IdentityUserClaim<string>' because this type is not included in the model for the context.
An unhandled exception occurred while processing the request. InvalidOperationException: Cannot crea ...
- 学术Essay写作如何体现逻辑的应用
作为一篇学术essay,逻辑要求是必不可少的.那么,学术essay如何写作才能体现逻辑呢?这就需要从语言逻辑和科学逻辑出发. 语言逻辑指的是三C原则:(1)complete(完整),(2)concis ...
- ACM-Fire Net
题目描述:Fire Net Suppose that we have a square city with straight streets. A map of a city is a squar ...
- vue学习(十二)vue全家桶 Vue-router&Vuex
一 vue-router的安装 二 vue-router的基本使用 三 命名路由 四 动态路由的匹配和路由组件的复用 一 vue-router的安装 NPM npm install vue-route ...
- selenium2Library报错: Unexpected error launching Internet Explorer. Browser zoom level was set to 119%. It should be set to 100%
Exception in thread "main" org.openqa.selenium.remote.SessionNotFoundException: Unexpected ...