PAT Advanced 1135 Is It A Red-Black Tree (30) [红⿊树]
题目
There is a kind of balanced binary search tree named red-black tree in the data structure. It has the following 5 properties:
(1) Every node is either red or black.
(2) The root is black.
(3) Every leaf (NULL) is black.
(4) If a node is red, then both its children are black.
(5) For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.
For example, the tree in Figure 1 is a red-black tree, while the ones in Figure 2 and 3 are not. For each given binary search tree, you are supposed to tell if it is a legal red-black tree.
Input Specification:
Each input file contains several test cases. The first line gives a positive integer K (≤30) which is the total number of cases. For each case, the first line gives a positive integer N (≤30), the total number of nodes in the binary tree. The second line gives the preorder traversal sequence of the tree. While all the keys in a tree are positive integers, we use negative signs to represent red nodes. All the numbers in a line are separated by a space. The sample input cases correspond to the trees shown in Figure 1, 2 and 3.
Output Specification:
For each test case, print in a line “Yes” if the given tree is a red-black tree, or “No” if not.
Sample Input:
39
7 -2 1 5 -4 -11 8 14 -15
9
11 -2 1 -7 5 -4 8 14 -15
8
10 -7 5 -6 8 15 -11 17
Sample Output:
Yes
No
No
题目分析
已知二叉查找树前序序列,判断其是否为红黑树(红节点用负数表示,黑节点用整数表示)
解题思路
- 前序序列建树(根节点大于等于左子树所有节点,小于右子树所有节点)或者依次插入建树
- 判断是否为红黑树
2.1 判断根节点是否为黑色
2.2 判断每个节点到其子树叶子节点的黑色结点数相同
2.3 判断红色节点的左右子节点都为黑色
Code
Code 01
#include <iostream>
#include <vector>
using namespace std;
struct node {
int v;
node * f;
node * r;
node (){}
node (int _v):v(_v){
f=r=NULL;
}
};
vector<int> pre;
// 前序建树
node * create(int preL,int preR){
if(preL>preR)return NULL;
node * root = new node(pre[preL]);
int k=preL+1;
while(k<preR&&abs(pre[k])<=abs(pre[preL]))k++;//找第一个大于根节点的值
root->f=create(preL+1,k-1);
root->r=create(k,preR);
return root;
}
// 判断红色节点的两个孩子是否都是黑色节点
bool judge1(node * root) {
if(root==NULL)return true;
if(root->v<0) {
if(root->f!=NULL&&root->f->v<0)return false;
if(root->r!=NULL&&root->r->v<0)return false;
}
return judge1(root->f)&&judge1(root->r);
}
// 获取当前节点高度(高度指:从当前节点到其子树的叶子节点的黑色结点数)
int getNum(node * root) {
if(root==NULL)return 1;
int f = getNum(root->f);
int r = getNum(root->r);
return root->v>0?max(f,r)+1:max(f,r);
}
// 判断每个节点到其子树的叶子节点的黑色节点数相同
bool judge2(node * root) {
if(root==NULL) return true;
int f= getNum(root->f);
int r= getNum(root->r);
if(f!=r)return false;
return judge2(root->f)&&judge2(root->r);
}
int main(int argc,char * argv[]) {
int k,n;
scanf("%d",&k);
for(int i=0; i<k; i++) {
scanf("%d",&n);
pre.clear();
pre.resize(n);
for(int j=0; j<n; j++) {
scanf("%d",&pre[j]);
}
node * root=create(0,n-1);
if(root->v<0||judge1(root)==false||judge2(root)==false) {
printf("No\n");
}else printf("Yes\n");
}
return 0;
}
Code 02
#include <iostream>
using namespace std;
struct node {
int v;
node * f;
node * r;
node (){}
node (int _v):v(_v){
f=r=NULL;
}
};
// 前序建树
void insert(node * &root,int v) {
if(root==NULL) {
root=new node(v);
return;
}
if(abs(v)<=abs(root->v))
insert(root->f, v);
else
insert(root->r,v);
}
// 判断红色节点的两个孩子是否都是黑色节点
bool judge1(node * root) {
if(root==NULL)return true;
if(root->v<0) {
if(root->f!=NULL&&root->f->v<0)return false;
if(root->r!=NULL&&root->r->v<0)return false;
}
return judge1(root->f)&&judge1(root->r);
}
// 获取当前节点高度(高度指:从当前节点到其子树的叶子节点的黑色结点数)
int getNum(node * root) {
if(root==NULL)return 1;
int f = getNum(root->f);
int r = getNum(root->r);
return root->v>0?max(f,r)+1:max(f,r);
}
// 判断每个节点到其子树的叶子节点的黑色节点数相同
bool judge2(node * root) {
if(root==NULL) return true;
int f= getNum(root->f);
int r= getNum(root->r);
if(f!=r)return false;
return judge2(root->f)&&judge2(root->r);
}
int main(int argc,char * argv[]) {
int k,n;
scanf("%d",&k);
for(int i=0; i<k; i++) {
scanf("%d",&n);
int nds[n];
node * root=NULL;
for(int j=0; j<n; j++) {
scanf("%d",&nds[j]);
insert(root,nds[j]);
}
if(root->v<0||judge1(root)==false||judge2(root)==false) {
printf("No\n");
}else printf("Yes\n");
}
return 0;
}
PAT Advanced 1135 Is It A Red-Black Tree (30) [红⿊树]的更多相关文章
- PAT Advanced 1123 Is It a Complete AVL Tree (30) [AVL树]
题目 An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child ...
- PAT (Advanced Level) 1099. Build A Binary Search Tree (30)
预处理每个节点左子树有多少个点. 然后确定值得时候递归下去就可以了. #include<cstdio> #include<cstring> #include<cmath& ...
- PAT (Advanced Level) 1115. Counting Nodes in a BST (30)
简单题.统计一下即可. #include<cstdio> #include<cstring> #include<cmath> #include<vector& ...
- PAT (Advanced Level) 1087. All Roads Lead to Rome (30)
暴力DFS. #include<cstdio> #include<cstring> #include<cmath> #include<vector> # ...
- PAT Advanced 1043 Is It a Binary Search Tree (25) [⼆叉查找树BST]
题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...
- PAT Advanced 1094 The Largest Generation (25) [BFS,DFS,树的遍历]
题目 A family hierarchy is usually presented by a pedigree tree where all the nodes on the same level ...
- Red Black Tree(红黑树)
(修改于 2018-05-06 15:53:22 还差删除维护操作.层序遍历没完成.维护操作没完成不想写层序遍历怎么办...) 今天下午完成了红黑树的插入的维护操作,但删除的维护操作还没有解决,删除的 ...
- PAT甲级1123 Is It a Complete AVL Tree【AVL树】
题目:https://pintia.cn/problem-sets/994805342720868352/problems/994805351302414336 题意: 给定n个树,依次插入一棵AVL ...
- PAT甲级题解-1123. Is It a Complete AVL Tree (30)-AVL树+满二叉树
博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6806292.html特别不喜欢那些随便转载别人的原创文章又不给 ...
随机推荐
- php笔记04
PHP+MySQL 连接数据库 mysqli <?php $servername="localhost"; $username="root"; $pass ...
- 提升Windows系统舒适度软件
1.Geek Uninstaller 卸载软件 2.PotPlayer 无广告播放器
- OpenCV HOGDescriptor 参数图解
防止以后再次掉入坑中,决定还是在写写吧 OpenCV中的HOG特征提取功能使用了HOGDescriptor这个类来进行封装,其中也有现成的行人检测的接口.然而,无论是OpenCV官方说明文档还是各个中 ...
- python正则表达式匹配多行
参数re.S jsProp = 'b' fpData = '''var a = []; var b = []; var c = [];''' .*是尽可能匹配多的 searchResult = r ...
- Java按位运算符之按位取反
一 数据储存形式 二进制在内存中以补码的形式存在. 补码首位是符号位,0表示该数是正数,1表示该数是负数. 例如: 数值 带符号的二进制原码 (首位表示符号位) 补码 内存中的形式 (*表示无 ...
- S7-300定时器使用总结
以后 规定我写博客 标题 全部采用 黄色第 加粗的黑色字体. S7-300 一共5种定时器 5种定时器线圈 S7-300的SIMATIC定时器的个数为(128~2028个)与CPU的型号有关, 定时器 ...
- POJ 3077 : Rounders
Rounders Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7827 Accepted: 5062 Description ...
- linux中实用的小工具lrzsz
使用xshell或者其他ssh工具连接上服务器后我们需要向服务器中上传或者下载文件 这时候就用到了lrzsz可以代替其他的ftp软件 yun install - y lrzsz 安装 rz 上传 sz ...
- torchvision.datasets
转载 https://ptorch.com/docs/8/torchvision-datasets
- 把Ubuntu系统自带的源修改为国内的源,中科大源链接:https://mirrors.ustc.edu.cn/repogen/
https://mirrors.ustc.edu.cn/repogen/ Tips: 可通过 URL 的形式直接下载配置. 例如: https://mirrors.ustc.edu.cn/repoge ...