PAT Advanced 1135 Is It A Red-Black Tree (30) [红⿊树]
题目
There is a kind of balanced binary search tree named red-black tree in the data structure. It has the following 5 properties:
(1) Every node is either red or black.
(2) The root is black.
(3) Every leaf (NULL) is black.
(4) If a node is red, then both its children are black.
(5) For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.
For example, the tree in Figure 1 is a red-black tree, while the ones in Figure 2 and 3 are not. For each given binary search tree, you are supposed to tell if it is a legal red-black tree.
Input Specification:
Each input file contains several test cases. The first line gives a positive integer K (≤30) which is the total number of cases. For each case, the first line gives a positive integer N (≤30), the total number of nodes in the binary tree. The second line gives the preorder traversal sequence of the tree. While all the keys in a tree are positive integers, we use negative signs to represent red nodes. All the numbers in a line are separated by a space. The sample input cases correspond to the trees shown in Figure 1, 2 and 3.
Output Specification:
For each test case, print in a line “Yes” if the given tree is a red-black tree, or “No” if not.
Sample Input:
39
7 -2 1 5 -4 -11 8 14 -15
9
11 -2 1 -7 5 -4 8 14 -15
8
10 -7 5 -6 8 15 -11 17
Sample Output:
Yes
No
No
题目分析
已知二叉查找树前序序列,判断其是否为红黑树(红节点用负数表示,黑节点用整数表示)
解题思路
- 前序序列建树(根节点大于等于左子树所有节点,小于右子树所有节点)或者依次插入建树
- 判断是否为红黑树
2.1 判断根节点是否为黑色
2.2 判断每个节点到其子树叶子节点的黑色结点数相同
2.3 判断红色节点的左右子节点都为黑色
Code
Code 01
#include <iostream>
#include <vector>
using namespace std;
struct node {
int v;
node * f;
node * r;
node (){}
node (int _v):v(_v){
f=r=NULL;
}
};
vector<int> pre;
// 前序建树
node * create(int preL,int preR){
if(preL>preR)return NULL;
node * root = new node(pre[preL]);
int k=preL+1;
while(k<preR&&abs(pre[k])<=abs(pre[preL]))k++;//找第一个大于根节点的值
root->f=create(preL+1,k-1);
root->r=create(k,preR);
return root;
}
// 判断红色节点的两个孩子是否都是黑色节点
bool judge1(node * root) {
if(root==NULL)return true;
if(root->v<0) {
if(root->f!=NULL&&root->f->v<0)return false;
if(root->r!=NULL&&root->r->v<0)return false;
}
return judge1(root->f)&&judge1(root->r);
}
// 获取当前节点高度(高度指:从当前节点到其子树的叶子节点的黑色结点数)
int getNum(node * root) {
if(root==NULL)return 1;
int f = getNum(root->f);
int r = getNum(root->r);
return root->v>0?max(f,r)+1:max(f,r);
}
// 判断每个节点到其子树的叶子节点的黑色节点数相同
bool judge2(node * root) {
if(root==NULL) return true;
int f= getNum(root->f);
int r= getNum(root->r);
if(f!=r)return false;
return judge2(root->f)&&judge2(root->r);
}
int main(int argc,char * argv[]) {
int k,n;
scanf("%d",&k);
for(int i=0; i<k; i++) {
scanf("%d",&n);
pre.clear();
pre.resize(n);
for(int j=0; j<n; j++) {
scanf("%d",&pre[j]);
}
node * root=create(0,n-1);
if(root->v<0||judge1(root)==false||judge2(root)==false) {
printf("No\n");
}else printf("Yes\n");
}
return 0;
}
Code 02
#include <iostream>
using namespace std;
struct node {
int v;
node * f;
node * r;
node (){}
node (int _v):v(_v){
f=r=NULL;
}
};
// 前序建树
void insert(node * &root,int v) {
if(root==NULL) {
root=new node(v);
return;
}
if(abs(v)<=abs(root->v))
insert(root->f, v);
else
insert(root->r,v);
}
// 判断红色节点的两个孩子是否都是黑色节点
bool judge1(node * root) {
if(root==NULL)return true;
if(root->v<0) {
if(root->f!=NULL&&root->f->v<0)return false;
if(root->r!=NULL&&root->r->v<0)return false;
}
return judge1(root->f)&&judge1(root->r);
}
// 获取当前节点高度(高度指:从当前节点到其子树的叶子节点的黑色结点数)
int getNum(node * root) {
if(root==NULL)return 1;
int f = getNum(root->f);
int r = getNum(root->r);
return root->v>0?max(f,r)+1:max(f,r);
}
// 判断每个节点到其子树的叶子节点的黑色节点数相同
bool judge2(node * root) {
if(root==NULL) return true;
int f= getNum(root->f);
int r= getNum(root->r);
if(f!=r)return false;
return judge2(root->f)&&judge2(root->r);
}
int main(int argc,char * argv[]) {
int k,n;
scanf("%d",&k);
for(int i=0; i<k; i++) {
scanf("%d",&n);
int nds[n];
node * root=NULL;
for(int j=0; j<n; j++) {
scanf("%d",&nds[j]);
insert(root,nds[j]);
}
if(root->v<0||judge1(root)==false||judge2(root)==false) {
printf("No\n");
}else printf("Yes\n");
}
return 0;
}
PAT Advanced 1135 Is It A Red-Black Tree (30) [红⿊树]的更多相关文章
- PAT Advanced 1123 Is It a Complete AVL Tree (30) [AVL树]
题目 An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child ...
- PAT (Advanced Level) 1099. Build A Binary Search Tree (30)
预处理每个节点左子树有多少个点. 然后确定值得时候递归下去就可以了. #include<cstdio> #include<cstring> #include<cmath& ...
- PAT (Advanced Level) 1115. Counting Nodes in a BST (30)
简单题.统计一下即可. #include<cstdio> #include<cstring> #include<cmath> #include<vector& ...
- PAT (Advanced Level) 1087. All Roads Lead to Rome (30)
暴力DFS. #include<cstdio> #include<cstring> #include<cmath> #include<vector> # ...
- PAT Advanced 1043 Is It a Binary Search Tree (25) [⼆叉查找树BST]
题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...
- PAT Advanced 1094 The Largest Generation (25) [BFS,DFS,树的遍历]
题目 A family hierarchy is usually presented by a pedigree tree where all the nodes on the same level ...
- Red Black Tree(红黑树)
(修改于 2018-05-06 15:53:22 还差删除维护操作.层序遍历没完成.维护操作没完成不想写层序遍历怎么办...) 今天下午完成了红黑树的插入的维护操作,但删除的维护操作还没有解决,删除的 ...
- PAT甲级1123 Is It a Complete AVL Tree【AVL树】
题目:https://pintia.cn/problem-sets/994805342720868352/problems/994805351302414336 题意: 给定n个树,依次插入一棵AVL ...
- PAT甲级题解-1123. Is It a Complete AVL Tree (30)-AVL树+满二叉树
博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6806292.html特别不喜欢那些随便转载别人的原创文章又不给 ...
随机推荐
- C++ MySQL封装类
#ifndef MYSQL_MANAGER_H #define MYSQL_MANAGER_H #include <Winsock2.h> #include "mysql.h&q ...
- 【linux】linux系统安全设置
1.下载安装安全软件 2.取消Telnet登录采用SSH方式并更改ssh服务端远程登录的配置 1)Telnet登录协议是明文不加密不安全,所以采用更安全的SSH协议. 2)更改ssh服务端远程登录相关 ...
- 【pwnable.kr】cmd2
这道题是上一个cmd1的升级版 ssh cmd2@pwnable.kr -p2222 (pw:mommy now I get what PATH environmentis for :)) 登录之后, ...
- Linux下的文件目录树结构
Linux下的文件目录及文件结构 一.文件和文件夹 在Linux系统下,一切皆是文件.就连Linux本身也是基于文件表示的操作系统. 1.文件:文件在Linux系统之下,一般分为两种:一是一般性文件, ...
- React+Flask打造前后端分离项目开发环境
目录 前言 Backend-Flask Frontend-React Done References 前言 新的一年,开始水第一篇技术文.碰巧最近React玩得多,撸一篇文章纪念一下开发环境的搭建.
- 蓝桥杯-机器繁殖 第6届C语言C组决赛第4题
题目叙述: 标题:机器人繁殖 X星系的机器人可以自动复制自己.它们用1年的时间可以复制出2个自己,然后就失去复制能力.每年X星系都会选出1个新出生的机器人发往太空.也就是说,如果X星系原有机器人5个, ...
- 面向对象设计思想和MVC设计模式
虽然之前学习Java时有接触过面向对象的设计思想,但因当时Java没学好.所以导致这两天讲php的面向对象设计时,感到没有头绪,这也反应了我练习少和逻辑能力的不足.而MVC设计思想 面向对象就是要将系 ...
- centos7-虚拟机 主机 互通 静态ip网络设置
由于目前互联网发展的速度之快.用户量之多,很多时候作为服务端单台服务器的硬件配置已经不足以支撑业务.集群.分布式等技术架构变得越来越普及,作为开发人员也有必要掌握相关技能.笔者打算选用virtual ...
- oracle 的存储过程
-----推荐视频 https://ke.qq.com/webcourse/index.html#course_id=292495&term_id=100346599&taid= ...
- 【LeetCode】最长连续序列
[问题]给定一个未排序的整数数组,找出最长连续序列的长度. 要求算法的时间复杂度为 O(n). 示例: 输入: [, , , , , ] 输出: 解释: 最长连续序列是 [, , , ].它的长度为 ...