PAT Advanced 1135 Is It A Red-Black Tree (30) [红⿊树]
题目
There is a kind of balanced binary search tree named red-black tree in the data structure. It has the following 5 properties:
(1) Every node is either red or black.
(2) The root is black.
(3) Every leaf (NULL) is black.
(4) If a node is red, then both its children are black.
(5) For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.
For example, the tree in Figure 1 is a red-black tree, while the ones in Figure 2 and 3 are not. For each given binary search tree, you are supposed to tell if it is a legal red-black tree.
Input Specification:
Each input file contains several test cases. The first line gives a positive integer K (≤30) which is the total number of cases. For each case, the first line gives a positive integer N (≤30), the total number of nodes in the binary tree. The second line gives the preorder traversal sequence of the tree. While all the keys in a tree are positive integers, we use negative signs to represent red nodes. All the numbers in a line are separated by a space. The sample input cases correspond to the trees shown in Figure 1, 2 and 3.
Output Specification:
For each test case, print in a line “Yes” if the given tree is a red-black tree, or “No” if not.
Sample Input:
39
7 -2 1 5 -4 -11 8 14 -15
9
11 -2 1 -7 5 -4 8 14 -15
8
10 -7 5 -6 8 15 -11 17
Sample Output:
Yes
No
No
题目分析
已知二叉查找树前序序列,判断其是否为红黑树(红节点用负数表示,黑节点用整数表示)
解题思路
- 前序序列建树(根节点大于等于左子树所有节点,小于右子树所有节点)或者依次插入建树
- 判断是否为红黑树
2.1 判断根节点是否为黑色
2.2 判断每个节点到其子树叶子节点的黑色结点数相同
2.3 判断红色节点的左右子节点都为黑色
Code
Code 01
#include <iostream>
#include <vector>
using namespace std;
struct node {
int v;
node * f;
node * r;
node (){}
node (int _v):v(_v){
f=r=NULL;
}
};
vector<int> pre;
// 前序建树
node * create(int preL,int preR){
if(preL>preR)return NULL;
node * root = new node(pre[preL]);
int k=preL+1;
while(k<preR&&abs(pre[k])<=abs(pre[preL]))k++;//找第一个大于根节点的值
root->f=create(preL+1,k-1);
root->r=create(k,preR);
return root;
}
// 判断红色节点的两个孩子是否都是黑色节点
bool judge1(node * root) {
if(root==NULL)return true;
if(root->v<0) {
if(root->f!=NULL&&root->f->v<0)return false;
if(root->r!=NULL&&root->r->v<0)return false;
}
return judge1(root->f)&&judge1(root->r);
}
// 获取当前节点高度(高度指:从当前节点到其子树的叶子节点的黑色结点数)
int getNum(node * root) {
if(root==NULL)return 1;
int f = getNum(root->f);
int r = getNum(root->r);
return root->v>0?max(f,r)+1:max(f,r);
}
// 判断每个节点到其子树的叶子节点的黑色节点数相同
bool judge2(node * root) {
if(root==NULL) return true;
int f= getNum(root->f);
int r= getNum(root->r);
if(f!=r)return false;
return judge2(root->f)&&judge2(root->r);
}
int main(int argc,char * argv[]) {
int k,n;
scanf("%d",&k);
for(int i=0; i<k; i++) {
scanf("%d",&n);
pre.clear();
pre.resize(n);
for(int j=0; j<n; j++) {
scanf("%d",&pre[j]);
}
node * root=create(0,n-1);
if(root->v<0||judge1(root)==false||judge2(root)==false) {
printf("No\n");
}else printf("Yes\n");
}
return 0;
}
Code 02
#include <iostream>
using namespace std;
struct node {
int v;
node * f;
node * r;
node (){}
node (int _v):v(_v){
f=r=NULL;
}
};
// 前序建树
void insert(node * &root,int v) {
if(root==NULL) {
root=new node(v);
return;
}
if(abs(v)<=abs(root->v))
insert(root->f, v);
else
insert(root->r,v);
}
// 判断红色节点的两个孩子是否都是黑色节点
bool judge1(node * root) {
if(root==NULL)return true;
if(root->v<0) {
if(root->f!=NULL&&root->f->v<0)return false;
if(root->r!=NULL&&root->r->v<0)return false;
}
return judge1(root->f)&&judge1(root->r);
}
// 获取当前节点高度(高度指:从当前节点到其子树的叶子节点的黑色结点数)
int getNum(node * root) {
if(root==NULL)return 1;
int f = getNum(root->f);
int r = getNum(root->r);
return root->v>0?max(f,r)+1:max(f,r);
}
// 判断每个节点到其子树的叶子节点的黑色节点数相同
bool judge2(node * root) {
if(root==NULL) return true;
int f= getNum(root->f);
int r= getNum(root->r);
if(f!=r)return false;
return judge2(root->f)&&judge2(root->r);
}
int main(int argc,char * argv[]) {
int k,n;
scanf("%d",&k);
for(int i=0; i<k; i++) {
scanf("%d",&n);
int nds[n];
node * root=NULL;
for(int j=0; j<n; j++) {
scanf("%d",&nds[j]);
insert(root,nds[j]);
}
if(root->v<0||judge1(root)==false||judge2(root)==false) {
printf("No\n");
}else printf("Yes\n");
}
return 0;
}
PAT Advanced 1135 Is It A Red-Black Tree (30) [红⿊树]的更多相关文章
- PAT Advanced 1123 Is It a Complete AVL Tree (30) [AVL树]
题目 An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child ...
- PAT (Advanced Level) 1099. Build A Binary Search Tree (30)
预处理每个节点左子树有多少个点. 然后确定值得时候递归下去就可以了. #include<cstdio> #include<cstring> #include<cmath& ...
- PAT (Advanced Level) 1115. Counting Nodes in a BST (30)
简单题.统计一下即可. #include<cstdio> #include<cstring> #include<cmath> #include<vector& ...
- PAT (Advanced Level) 1087. All Roads Lead to Rome (30)
暴力DFS. #include<cstdio> #include<cstring> #include<cmath> #include<vector> # ...
- PAT Advanced 1043 Is It a Binary Search Tree (25) [⼆叉查找树BST]
题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...
- PAT Advanced 1094 The Largest Generation (25) [BFS,DFS,树的遍历]
题目 A family hierarchy is usually presented by a pedigree tree where all the nodes on the same level ...
- Red Black Tree(红黑树)
(修改于 2018-05-06 15:53:22 还差删除维护操作.层序遍历没完成.维护操作没完成不想写层序遍历怎么办...) 今天下午完成了红黑树的插入的维护操作,但删除的维护操作还没有解决,删除的 ...
- PAT甲级1123 Is It a Complete AVL Tree【AVL树】
题目:https://pintia.cn/problem-sets/994805342720868352/problems/994805351302414336 题意: 给定n个树,依次插入一棵AVL ...
- PAT甲级题解-1123. Is It a Complete AVL Tree (30)-AVL树+满二叉树
博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6806292.html特别不喜欢那些随便转载别人的原创文章又不给 ...
随机推荐
- JAVA笔记01 变量的取名
第2章 有意义的命名2.1 介绍2.2 名副其实 变量名太随意,haha.list1.ok 这些都没啥意义2.3 避免误导 包含List等关键字.字母o与数字0等2.4 做有意义的区分 反面教材,变量 ...
- [题解] LuoguP2764 最小路径覆盖问题
传送门 好久没做网络流方面的题发现自己啥都不会了qwq 题意:给一张有向图,让你用最少的简单路径覆盖所有的点. 考虑这样一个东西,刚开始,我们有\(n\)条路径,每条路径就是单一的一个点,那么我们的目 ...
- Day 24:XML基础
Q: 什么是XML,为什么学习XML? A:XML为可扩展标记语言. 标签由开发者自己制定的(要按照一定的语法定义)描述带关系的数据(作为软件的配置文件): 包含与被包含的关系 properties文 ...
- 不能安装64位office提示已安装32位如何处理
不能安装64位office提示已安装32位如何处理? 1 2 3 4 5 6 当你遇到提示说[无法安装64位版本的office,以为在您的PC上找一下32位程序......]时如果你还想安装64位 ...
- POJ 3983:快算24
快算24 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4791 Accepted: 2930 Description ...
- Result Maps collection already contains value for com.xxx.x.dao.xxxMapper.Bas
springboot启动时候,报错如下: Result Maps collection already contains value for com.xxx.xx.dao.xxxxxMapper.Ba ...
- Redis 详解 (六) RDB 持久化
目录 1.RDB 简介 2.触发方式 ①.自动触发 ②.手动触发 3.恢复数据 4.停止 RDB 持久化 5.RDB 的优势和劣势 6.RDB 自动保存的原理 前面我们说过,Redis 相对于 Me ...
- NAT的三种方式
NAT的三种方式: 一.端口NAT acces-list 1 permit IP/Mask ip nat inside source list “number” interface fastether ...
- C++ for无限循环~
无限循环 如果条件永远不为假,则循环将变成无限循环.for 循环在传统意义上可用于实现无限循环.由于构成循环的三个表达式中任何一个都不是必需的,您可以将某些条件表达式留空来构成一个无限循环. #inc ...
- servlet 之 HttpServlet抽象类详解
Servlet的框架是由两个Java包组成:javax.servlet和javax.servlet.http. 在javax.servlet包中定义了所有的Servlet类都必须实现或扩展的的通用接口 ...