PAT Advanced 1135 Is It A Red-Black Tree (30) [红⿊树]
题目
There is a kind of balanced binary search tree named red-black tree in the data structure. It has the following 5 properties:
(1) Every node is either red or black.
(2) The root is black.
(3) Every leaf (NULL) is black.
(4) If a node is red, then both its children are black.
(5) For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.
For example, the tree in Figure 1 is a red-black tree, while the ones in Figure 2 and 3 are not. For each given binary search tree, you are supposed to tell if it is a legal red-black tree.
Input Specification:
Each input file contains several test cases. The first line gives a positive integer K (≤30) which is the total number of cases. For each case, the first line gives a positive integer N (≤30), the total number of nodes in the binary tree. The second line gives the preorder traversal sequence of the tree. While all the keys in a tree are positive integers, we use negative signs to represent red nodes. All the numbers in a line are separated by a space. The sample input cases correspond to the trees shown in Figure 1, 2 and 3.
Output Specification:
For each test case, print in a line “Yes” if the given tree is a red-black tree, or “No” if not.
Sample Input:
39
7 -2 1 5 -4 -11 8 14 -15
9
11 -2 1 -7 5 -4 8 14 -15
8
10 -7 5 -6 8 15 -11 17
Sample Output:
Yes
No
No
题目分析
已知二叉查找树前序序列,判断其是否为红黑树(红节点用负数表示,黑节点用整数表示)
解题思路
- 前序序列建树(根节点大于等于左子树所有节点,小于右子树所有节点)或者依次插入建树
- 判断是否为红黑树
2.1 判断根节点是否为黑色
2.2 判断每个节点到其子树叶子节点的黑色结点数相同
2.3 判断红色节点的左右子节点都为黑色
Code
Code 01
#include <iostream>
#include <vector>
using namespace std;
struct node {
int v;
node * f;
node * r;
node (){}
node (int _v):v(_v){
f=r=NULL;
}
};
vector<int> pre;
// 前序建树
node * create(int preL,int preR){
if(preL>preR)return NULL;
node * root = new node(pre[preL]);
int k=preL+1;
while(k<preR&&abs(pre[k])<=abs(pre[preL]))k++;//找第一个大于根节点的值
root->f=create(preL+1,k-1);
root->r=create(k,preR);
return root;
}
// 判断红色节点的两个孩子是否都是黑色节点
bool judge1(node * root) {
if(root==NULL)return true;
if(root->v<0) {
if(root->f!=NULL&&root->f->v<0)return false;
if(root->r!=NULL&&root->r->v<0)return false;
}
return judge1(root->f)&&judge1(root->r);
}
// 获取当前节点高度(高度指:从当前节点到其子树的叶子节点的黑色结点数)
int getNum(node * root) {
if(root==NULL)return 1;
int f = getNum(root->f);
int r = getNum(root->r);
return root->v>0?max(f,r)+1:max(f,r);
}
// 判断每个节点到其子树的叶子节点的黑色节点数相同
bool judge2(node * root) {
if(root==NULL) return true;
int f= getNum(root->f);
int r= getNum(root->r);
if(f!=r)return false;
return judge2(root->f)&&judge2(root->r);
}
int main(int argc,char * argv[]) {
int k,n;
scanf("%d",&k);
for(int i=0; i<k; i++) {
scanf("%d",&n);
pre.clear();
pre.resize(n);
for(int j=0; j<n; j++) {
scanf("%d",&pre[j]);
}
node * root=create(0,n-1);
if(root->v<0||judge1(root)==false||judge2(root)==false) {
printf("No\n");
}else printf("Yes\n");
}
return 0;
}
Code 02
#include <iostream>
using namespace std;
struct node {
int v;
node * f;
node * r;
node (){}
node (int _v):v(_v){
f=r=NULL;
}
};
// 前序建树
void insert(node * &root,int v) {
if(root==NULL) {
root=new node(v);
return;
}
if(abs(v)<=abs(root->v))
insert(root->f, v);
else
insert(root->r,v);
}
// 判断红色节点的两个孩子是否都是黑色节点
bool judge1(node * root) {
if(root==NULL)return true;
if(root->v<0) {
if(root->f!=NULL&&root->f->v<0)return false;
if(root->r!=NULL&&root->r->v<0)return false;
}
return judge1(root->f)&&judge1(root->r);
}
// 获取当前节点高度(高度指:从当前节点到其子树的叶子节点的黑色结点数)
int getNum(node * root) {
if(root==NULL)return 1;
int f = getNum(root->f);
int r = getNum(root->r);
return root->v>0?max(f,r)+1:max(f,r);
}
// 判断每个节点到其子树的叶子节点的黑色节点数相同
bool judge2(node * root) {
if(root==NULL) return true;
int f= getNum(root->f);
int r= getNum(root->r);
if(f!=r)return false;
return judge2(root->f)&&judge2(root->r);
}
int main(int argc,char * argv[]) {
int k,n;
scanf("%d",&k);
for(int i=0; i<k; i++) {
scanf("%d",&n);
int nds[n];
node * root=NULL;
for(int j=0; j<n; j++) {
scanf("%d",&nds[j]);
insert(root,nds[j]);
}
if(root->v<0||judge1(root)==false||judge2(root)==false) {
printf("No\n");
}else printf("Yes\n");
}
return 0;
}
PAT Advanced 1135 Is It A Red-Black Tree (30) [红⿊树]的更多相关文章
- PAT Advanced 1123 Is It a Complete AVL Tree (30) [AVL树]
题目 An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child ...
- PAT (Advanced Level) 1099. Build A Binary Search Tree (30)
预处理每个节点左子树有多少个点. 然后确定值得时候递归下去就可以了. #include<cstdio> #include<cstring> #include<cmath& ...
- PAT (Advanced Level) 1115. Counting Nodes in a BST (30)
简单题.统计一下即可. #include<cstdio> #include<cstring> #include<cmath> #include<vector& ...
- PAT (Advanced Level) 1087. All Roads Lead to Rome (30)
暴力DFS. #include<cstdio> #include<cstring> #include<cmath> #include<vector> # ...
- PAT Advanced 1043 Is It a Binary Search Tree (25) [⼆叉查找树BST]
题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...
- PAT Advanced 1094 The Largest Generation (25) [BFS,DFS,树的遍历]
题目 A family hierarchy is usually presented by a pedigree tree where all the nodes on the same level ...
- Red Black Tree(红黑树)
(修改于 2018-05-06 15:53:22 还差删除维护操作.层序遍历没完成.维护操作没完成不想写层序遍历怎么办...) 今天下午完成了红黑树的插入的维护操作,但删除的维护操作还没有解决,删除的 ...
- PAT甲级1123 Is It a Complete AVL Tree【AVL树】
题目:https://pintia.cn/problem-sets/994805342720868352/problems/994805351302414336 题意: 给定n个树,依次插入一棵AVL ...
- PAT甲级题解-1123. Is It a Complete AVL Tree (30)-AVL树+满二叉树
博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6806292.html特别不喜欢那些随便转载别人的原创文章又不给 ...
随机推荐
- 吴裕雄--天生自然java开发常用类库学习笔记:Stack类
import java.util.Stack ; public class StackDemo{ public static void main(String args[]){ Stack<St ...
- POJ1723 SOLDIERS 兄弟连
SOLDIERS 有一个性质:在一个长为n的序列a中找一个数 \(a_k\) 使得 \(\sum\limits_{i=1}^n abs(a_i-a_k)\) 最小,则 \(a_k\) 是a的中位数. ...
- 洛谷[Luogu] 普及村-简单的模拟总结
题目列表 注明:Level值代表在本难度下的排行.(纯粹本蒟蒻主观评判)注明:Level值代表在本难度下的排行.(纯粹本蒟蒻主观评判)注明:Level值代表在本难度下的排行.(纯粹本蒟蒻主观评判) P ...
- oracle学习笔记(4)
4.oracle数据库的启动流程 windows操作系统 启动监听: lsnrctl start; 启动数据库实例:oradim-startup-sid 实例名 linux系统 启动监听:lsnrct ...
- 留学生如何完成一篇高质量的Essay?
本文将以典型的essay写作结构作为框架, 分别介绍如何审题.构思.立意, 如何高效地收集有效的资料, 如何撰写, 如何规范参考文献格式等. 审题&构思&立意定题 审题 一年之计在于春 ...
- Flink 复杂事物处理
简介 FlinkCEP是在Flink之上实现的复杂事件处理(CEP)库. 它允许你在无界的事件流中检测事件模式,让你有机会掌握数据中重要的事项. Flink CEP 首先需要用户创建定义一个个patt ...
- flink笔记(三) flink架构及运行方式
架构图 Job Managers, Task Managers, Clients JobManager(Master) 用于协调分布式执行.它们用来调度task,协调检查点,协调失败时恢复等. Fli ...
- NumPy 矩阵库函数
章节 Numpy 介绍 Numpy 安装 NumPy ndarray NumPy 数据类型 NumPy 数组创建 NumPy 基于已有数据创建数组 NumPy 基于数值区间创建数组 NumPy 数组切 ...
- jedis哨兵模式的redis组(集群),连接池实现。(客户端分片)
java 连接redis 我们都使用的 是jedis ,对于redis这种频繁请求的场景我们一般需要对其池化避免重复创建,即创建一个连接池 ,打开jedis的 jar包我们发现,jedis对池已经有 ...
- Cobalt Strike简单使用(9,29第十五天)
本文转自:https://www.cnblogs.com/yuanshu/p/11616657.html 一.介绍: 后渗透测试工具,基于Java开发,适用于团队间协同作战,简称“CS”. CS分为客 ...