(Java实现) 均分纸牌
题目描述
有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若于张纸牌,然后移动。
移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。
例如 N=4,4 堆纸牌数分别为:
①9②8③17④6
移动3次可达到目的:
从 ③ 取 4 张牌放到 ④ (9 8 13 10) -> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到①(10 10 10 10)。
输入输出格式
输入格式:
键盘输入文件名。文件格式:
N(N 堆纸牌,1 <= N <= 100)
A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000)
输出格式:
输出至屏幕。格式为:
所有堆均达到相等时的最少移动次数。
输入输出样例
输入样例#1:
4
9 8 17 6
输出样例#1:
3
import java.util.Scanner;
public class junfenzhipaiwenti {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n =sc.nextInt();
int [] num = new int [n];
for (int i = 0; i < num.length; i++) {
num[i]=sc.nextInt();
}
int a = moveCards(num);
System.out.println(a);
}
public static int moveCards(int[] groups) {
int count = 0, sum = 0;
for (int i = 0; i < groups.length; i++) {
sum += groups[i];
}
int average = sum / groups.length;
for (int i = 0; i < groups.length-1; i++) {
if (groups[i] == average) {
continue;
} else {
groups[i + 1] += groups[i] - average;
count++;
}
}
return count;
}
}
(Java实现) 均分纸牌的更多相关文章
- code vs 1098 均分纸牌(贪心)
1098 均分纸牌 2002年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description 有 N 堆纸牌 ...
- NOIP200205均分纸牌
均分纸牌 描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张 ...
- wikioi 1098 均分纸牌
题目描述 Description 有 N 堆纸牌,编号分别为 1,2,-, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸 ...
- NOIP2002 均分纸牌
题一 均分纸牌 (存盘名: NOIPG1) [问题描述] 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为: ...
- 【洛谷p1031】均分纸牌
[博客园的第一条随笔,值得纪念一下] 均分纸牌[传送门] 洛谷上的算法标签是 这道题是一道贪心题,过了四遍才过(蒟蒻有点废) 第一遍的时候考虑的非常少,只想到了求出平均数→求差值→从左往右加差值: 这 ...
- 洛谷P1368 均分纸牌(加强版)
P1368 均分纸牌(加强版) 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,纸牌总数必为 N 的倍数.可以在任一堆上取1张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取 ...
- 洛谷P1031 均分纸牌
P1031 均分纸牌 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若干张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌 ...
- 洛谷 P1031 均分纸牌
P1031 均分纸牌 这道题告诉我们,对于实在想不出算法的题,可以大胆按照直觉用贪心,而且在考试中永远不要试着去证明贪心算法,因为非常难证,会浪费大量时间. (这就是你们都不去证的理由??) 这道题贪 ...
- 均分纸牌(Noip2002)
1320:[例6.2]均分纸牌(Noip2002) 时间限制: 1000 ms 内存限制: 65536 KB提交数: 3537 通过数: 1839 [题目描述] 有n堆纸牌,编 ...
- 【题解】P1440 均分纸牌
均分纸牌 题目描述: 有\(N\)堆纸牌,编号分别为\(1,2,-,N\).每堆上有若干张,但纸牌总数必为\(N\)的倍数.可以在任一堆上取若干张纸牌,然后移动. 移牌规则为:在编号为\(1\)堆上取 ...
随机推荐
- Qt 视频播放器
#include <phonon/VideoPlayer> #include <phonon/SeekSlider> #include <phonon/MediaObje ...
- 如何使用apt-get在ubuntu系统上安装OpenJDK 8
文章目录 添加ppa仓库 设置openjdk版本 查看java 版本 Android 8.1 系统编译的时候需要安装OpenJDK 8,这里如果可以自己下载源码编译安装,当然本想编译Android系统 ...
- Linux下ffmpeg交叉编译
1 获取源代码 git clone -b "branch" https://git.ffmpeg.org/ffmpeg.git "branch" 可以是以下的m ...
- Python3+Pycharm+PyQt5环境搭建步骤
搭建环境: 操作系统:Win10 64bit Python版本:3.7 Pycharm:社区免费版 一.Python3.7安装 下载链接:官网 https://www.python.org/downl ...
- 快速了解pandas
pandas主要就下面两方面:(只要稍微了解下面两点,那你就会用了) 1.两种数据结构(Series和DataFrame) 2.对这两种数据进行处理(主要是对DataFrame处理) -------- ...
- python --字符串学习
一 转义字符 借用一个特殊的方法表示一系列不方便写出的内容,比如回车键,换行符,退格键 借助反斜杠字符,一旦出现反斜杠,则反斜杠后面一个或者几个字符表示已经不是原来的意思了 在字符串中,一旦出现了斜杠 ...
- Tomcat在IDEA部署Web项目
Tomcat在IDEA上部署Web项目: 一.新建Maven-Web项目: 1.新建项目,选择Maven,从模板中创建,选中web-app 2.选择项目地址: 3.选择配置的maven(如果按我之前写 ...
- lrzsz-神一样的上传下载工具
yum list lrzsz rz sz filename
- DRF认证组件
1.DRF认证组件之视图注册用法(自定义简单使用) settings.py配置 INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.a ...
- poj3249 拓扑找最长路
Test for Job Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 11230 Accepted: 2651 Des ...