欧几里德算法与扩展欧几里德算法

1.欧几里德算法

#include<bits/stdc++.h>

using namespace std;
int gcd(int a,int b)
{
if(b==0)
return a;
else
return gcd(b,a%b);
}
//return b == 0 ? a : gcd(b, a % b); int main()
{
int m,n;
while(cin>>m>>n)
cout<<gcd(m,n)<<endl;
return 0;
}

2.扩展欧几里德算法

扩展欧几里德算法顾名思义,是基于欧几里德算法之上的,可以用于求解很多数学问题,下面以计算所有 ax+by=c 符合要求的整数解为例:

#include<bits/stdc++.h>

using namespace std;
int a,b,c,x,y;
int exgcd(int a,int b,int &x,int &y)
{
if(!b){
x=1;y=0;return a;
}
int e=exgcd(b,a%b,x,y);
int temp=x;x=y;y=temp-a/b*y;
return e;
} int main()
{
scanf("%d%d%d",&a,&b,&c);
int k=exgcd(a,b,x,y); //exgcd返回最大公约数
if(c%k) cout<<"Impossible"<<endl;
else{
x*=c/k;y*=c/k;
cout<<"x="<<x<<",y="<<y<<endl; //ax+by=c的一组解
}
return 0;
}
/*最小正整数解:
a(x+db) + b(y-da) = c;其中:d=1/k,所以最小正整数解x是:
x*=c/k;t=b/k;则x=(x%t+t)%t;
求出最小x,其对应的y就是(c-a*x)/b。
最小正y也一样;
*/

gcd && exgcd算法的更多相关文章

  1. Gcd&Exgcd算法学习小记

    Preface 对于许多数论问题,都需要涉及到Gcd,求解Gcd,常常使用欧几里得算法,以前也只是背下来,没有真正了解并证明过. 对于许多求解问题,可以列出贝祖方程:ax+by=Gcd(a,b),用E ...

  2. 最大公约数(gcd):Euclid算法证明

    1个常识: 如果 a≥b 并且 b≤a,那么 a=b. 2个前提: 1)只在非负整数范围内讨论两个数 m 和 n 的最大公约数,即 m, n ∈ N. 2)0可以被任何数整除,但是0不能整除任何数,即 ...

  3. gcd&&exgcd&&斐蜀定理

    gcd就是求a和b最大公约数,一般方法就是递推.不多说,上代码. 一.迭代法 int gcd(int m, int n) { ) { int c = n % m; n = m; m = c; } re ...

  4. 读入 并查集 gcd/exgcd 高精度 快速幂

    ios_base::sync_with_stdio(); cin.tie(); ], nxt[MAXM << ], Head[MAXN], ed = ; inline void added ...

  5. 【数论】如何证明gcd/exgcd

    我恨数论 因为打这篇的时候以为a|b是a是b的倍数,但是懒得改了,索性定义 a|b 为 a是b的倍数 咳咳,那么进入正题,如何证明gcd,也就是 gcd(a,b) = gcd(b,a%b)? 首先,设 ...

  6. Gcd&Exgcd

    欧几里得算法: \[gcd(a,b)=gcd(b,a\bmod b)\] 证明: 显然(大雾) 扩展欧几里得及证明: 为解决一个形如 \[ax+by=c\] 的方程. 根据裴蜀定理,当且仅当 \[gc ...

  7. 约数,gcd,exgcd.

    很多题都是要求出什么最大公约数或者最小公倍数什么的,也有一些题目是和约数个数有关的,所以需要总结一下. 首先最大公约数和最小公倍数怎么求呢? 当然是观察法了,对于一些很聪明的孩纸他们一般随便一看就秒出 ...

  8. gcd, exgcd的证明

  9. 数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho

    数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p ...

随机推荐

  1. c# pcm

    using System; using System.IO; using System.Text; using System.Windows.Forms; using System.Runtime.I ...

  2. 题解 P4568 【[JLOI2011]飞行路线】

    P4568 [JLOI2011]飞行路线 分层图模板题,相似的题还有P4822 [BJWC2012]冻结,P2939 [USACO09FEB]改造路Revamping Trails,其实做惯了也就不难 ...

  3. 「JSOI2015」染色问题

    「JSOI2015」染色问题 传送门 虽然不是第一反应,不过还是想到了要容斥. 题意转化:需要求满足 \(N + M + C\) 个条件的方案数. 然后我们就枚举三个数 \(i, j, k\) ,表示 ...

  4. 迅速看一下jdk8

    一直在看java并发的感觉说的有点多,就看点简单的放松一下吧!这次来简单说一下jdk8,很久没用,都陌生了,仔细看看还挺有意思的,让我们大脑转化一个角度来写代码:因为我们现在平常大部分用jdk7写代码 ...

  5. Vue - 如何使用npm run build后的dist文件夹

    脚手架vue cli生成项目后,使用 npm run build 生成了一个dist文件夹(应该是distribution的缩写) 只要放在http服务器上就可以运行. 使用一句python命令可以搭 ...

  6. 红帽RHCE培训-课程3笔记内容1

    1 控制服务和守护进程 systemctl systemctl start ** systemctl restart ** systemctl enable ** systemctl status * ...

  7. 解决maven项目java中配置文件打包被忽略

    pom.xml中添加以下配置 <build> <!--配置打包时不过滤非java文件开始 --> <!--说明,在进行模块化开发打jar包时,maven会将非java文件 ...

  8. javaweb项目运转流程

    做web项目,不仅要会做,还需要了解其工作流程,为什么这么做!这些知道了.其他的都是渣渣.上图!对于web 项目了解他的运行流程之后,基本其他的都不是问题.web项目还是很简单的 这是简化的开发时常用 ...

  9. 【PAT甲级】1099 Build A Binary Search Tree (30 分)

    题意: 输入一个正整数N(<=100),接着输入N行每行包括0~N-1结点的左右子结点,接着输入一行N个数表示数的结点值.输出这颗二叉排序树的层次遍历. AAAAAccepted code: # ...

  10. 将.NET Core Web Api发布到Linux(CentOS 7 64)

    将.NET Core(2.1) Web Api发布到Linux(CentOS 7 64) 近来在学习linux相关的一些东西,然后正巧想试一下把core的应用程序发布到Linux,毕竟跨平台.尝试一下 ...