@description@

定义 dp 序列:

\[dp(1) = K\\
dp(n) = A\times dp(n-1) + B\times \sum_{i=1}^{n-1}dp(i)\times dp(n-i)\]

Q 次询问,每次询问给出 L, R,求 \(\sum_{i=L}^{R}dp(i)^2\),对 10^9 + 7 取模。

原题戳我查看owo

@solution@

考虑写出生成函数 \(F(x) = \sum_{i=0}dp(i)x^i\),得到:

\[F(x) = Ax\times F(x) + B\times F^2(x) + Kx
\]

解方程得到 \(F(x) = \frac{(1-Ax)\pm\sqrt{(1-Ax)^2 - 4KBx}}{2B}\)。因为 F(x) 常数项为 0,舍弃一个根。有:

\[F(x) = \frac{(1-Ax)-\sqrt{(1-Ax)^2 - 4KBx}}{2B}
\]

尝试展开得到通项,发现展不开。

注意到当 A = 0 时就是个类似于卡特兰数的数列了,而卡特兰数众所周知有一个递推式子 \(f_n = \frac{4n-2}{n+1}f_{n-1}\)。

考虑给题目的数列找一个递推式子。首先我们考虑一下怎么通过生成函数得到卡特兰数的递推式子。

-----手动分割线-----

记 \(G(x) = \sum_{i=0}f_ix^i\),即卡特兰数的生成函数,众所周知 \(G(x) = \frac{1 - \sqrt{1-4x}}{2x}\)。

考虑对 \(G(x)\) 求导得到 \(G'(x) = \sum_{i=0}(i+1)\times f_{i+1}x^i\),根据求导法则有 \(G'(x) = \frac{(2x-1)\sqrt{1-4x}-4x+1}{8x^3 - 2x^2}\)。

因为 \(G(x) = \frac{1 - \sqrt{1-4x}}{2x}\),可以得到 \(\sqrt{1-4x} = 1 - 2xG(x)\),直接代入上式得到 \(G'(x) = \frac{-2xG(x)+G(x)+1}{4x^2-x}\)。

稍微变形可得 \((4x^2-x)G'(x) + (2x-1)G(x) = 1\)。

对比等式两边第 n 项的系数(假设 n ≠ 0),有 \(4(n-1)f_{n-1} - nf_{n} + 2f_{n-1} - f_{n} = 0\)。然后就可以得到 \(f_n = \frac{4n-2}{n+1}f_{n-1}\) 的结果。

-----手动分割线-----

该题也是类似的处理:求出 \(F'(x)\) 的表达式,用 \(F(x)\) 表示出根号项并代入 \(F'(x)\),最后可以得到这样一个结果(过程我就不给了,类似于上面的推导主要是太太太长了不想给):

\[(A^2x^2 - (4BK + 2A)x + 1)F'(x) + ((A + 2BK) - A^2x)F(x) = AKx + K
\]

然后依然是对比第 n 项系数(n > 1),得到 \(A^2(n-1)\times dp(n-1) - 2(A + 2BK)n\times dp(n) + (n+1)\times dp(n+1) + (A + 2BK)dp(n) - A^2dp(n-1) = 0\)

于是得到递推式 \((n+1)dp(n+1) = (2n - 1)(A + 2BK)dp(n) - A^2(n-2)dp(n-1)\)。

即 \(dp(n) = \frac{(2n - 3)(A + 2BK)dp(n) - A^2(n-3)dp(n-2)}{n}\)。

然后就没了。直接 O(N) 预处理。

@accepted code@

#include <cstdio>

const int MAXN = 10000000;
const int MOD = int(1E9) + 7;
int add(int a, int b) {return a + b >= MOD ? a + b - MOD : a + b;}
int sub(int a, int b) {return a - b < 0 ? a - b + MOD : a - b;}
int mul(int a, int b) {return 1LL*a*b%MOD;} int N, K, A, B, Q; int f[MAXN + 5], inv[MAXN + 5];
void init() {
inv[1] = 1;
for(int i=2;i<=N;i++)
inv[i] = (MOD - 1LL*(MOD/i)*inv[MOD%i]%MOD); int p = add(A,mul(2*K,B)), q = mul(A,A);
f[1] = K, f[2] = mul(K,add(A,mul(B,K)));
for(int i=3;i<=N;i++)
f[i] = mul(inv[i],sub(mul(mul(p,2*i-3),f[i-1]),mul(mul(q,i-3),f[i-2]))); for(int i=1;i<=N;i++) f[i] = add(f[i-1],mul(f[i],f[i]));
} int main() {
scanf("%d%d%d%d", &N, &K, &A, &B), init();
scanf("%d", &Q);
for(int i=1;i<=Q;i++) {
int L, R; scanf("%d%d", &L, &R);
printf("%d\n", sub(f[R], f[L-1]));
}
}

@details@

查了很久都没有查到卡特兰数的递推公式的生成函数证法(甚至翻到了wiki上去都没有。。。)。

一看题解,woc 还有求导这种操作。

早知道就不花几个晚上思考了。。。直接翻题解不挺好的。。。

@codechef - JADUGAR2@ Chef and Same Old Recurrence 2的更多相关文章

  1. [Codechef CHSTR] Chef and String - 后缀数组

    [Codechef CHSTR] Chef and String Description 每次询问 \(S\) 的子串中,选出 \(k\) 个相同子串的方案有多少种. Solution 本题要求不是很 ...

  2. 【Codechef】Chef and Bike(二维多项式插值)

    something wrong with my new blog! I can't type matrixs so I come back. qwq 题目:https://www.codechef.c ...

  3. 【CodeChef】Chef and Graph Queries

    Portal --> CC Chef and Graph Queries Solution 快乐数据结构题(然而好像有十分优秀的莫队+可撤销并查集搞法qwq) 首先考虑一种方式来方便一点地..计 ...

  4. [CodeChef - GERALD07 ] Chef and Graph Queries

    Read problems statements in Mandarin Chineseand Russian. Problem Statement Chef has a undirected gra ...

  5. CodeChef CHEFSOC2 Chef and Big Soccer 水dp

    Chef and Big Soccer   Problem code: CHEFSOC2 Tweet     ALL SUBMISSIONS All submissions for this prob ...

  6. Codechef FNCS Chef and Churu

    Disciption Chef has recently learnt Function and Addition. He is too exited to teach this to his fri ...

  7. CodeChef - FNCS Chef and Churu(分块)

    https://vjudge.net/problem/CodeChef-FNCS 题意: 思路: 用分块的方法,对每个函数进行分块,计算出该分块里每个数的个数,这样的话也就能很方便的计算出这个分块里所 ...

  8. 【xsy2111】 【CODECHEF】Chef and Churus 分块+树状数组

    题目大意:给你一个长度为$n$的数列$a_i$,定义$f_i=\sum_{j=l_i}^{r_i} num_j$. 有$m$个操作: 操作1:询问一个区间$l,r$请你求出$\sum_{i=l}^{r ...

  9. codechef T2 Chef and Sign Sequences

    CHEFSIGN: 大厨与符号序列题目描述 大厨昨天捡到了一个奇怪的字符串 s,这是一个仅包含‘<’.‘=’和‘>’三种比较符号的字符串. 记字符串长度为 N,大厨想要在字符串的开头.结尾 ...

随机推荐

  1. django 中CBV和FBV 路由写法的区别

    使用视图函数时, FBV: django完成URL解析之后,会直接把request对象以及URL解析器捕获的参数(比如re_path中正则表达捕获的位置参数或关键字参数)丢给视图函数 CBV: 这些参 ...

  2. java循环map

    Iterator<Entry<String,Integer>> it = exsitMap.entrySet().iterator(); while(it.hasNext()) ...

  3. 太高效了!玩了这么久的Linux,居然不知道这7个终端快捷键!

    大家好,我是良许. 作为 Linux 用户,大家肯定在 Linux 终端下敲过无数的命令.有的命令很短,比如:ls .cd .pwd 之类,这种命令大家毫无压力.但是,有些命令就比较长了,比如: $ ...

  4. SpringBoot踩坑日记

    1.Closing JPA EntityManagerFactory for persistence unit 'default'错误导致springboot启动后终止 --------------- ...

  5. TP5.0验证器使用方法

    比如我要在分类做一个验证器,首先要在你的后台模块先建立一个文件夹,比如我的后台模块是admin,那么你要在admin里面建立一个validate的文件夹然后再建立一个对应的php文件如下图 文件里面的 ...

  6. [批处理教程之Git]001.Git 常用命令大全

    基本技巧 1.安装后的第一步 安装git后,第一件事你需要设置你的名字和邮箱,因为每次提交都需要这些信息. $ git config --global user.name "Some One ...

  7. Java多线程--synchronized的用法

    全面介绍Synchronized:https://blog.csdn.net/luoweifu/article/details/46613015 synchronized class/this/obj ...

  8. python winreg总结

    注册表 结构 注册表由键(key,或称“项”).子键(subkey,子项)和值项(value)构成.一个键就是树状数据结构中的一个节点,而子键就是这个节点的子节点,子键也是键.一个值项则是一个键的一条 ...

  9. 50个SQL语句(MySQL版) 问题六

    --------------------------表结构-------------------------- student(StuId,StuName,StuAge,StuSex) 学生表 tea ...

  10. ES6背记手册

    ES6规范 阮一峰的ES6在线教程 在线图书--Exploring ES6 ES6 tutorials babel在线教程--https://babeljs.io/docs/en/learn.html ...