Description

Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his sale area there are N shopkeepers (marked from 1 to N) which stocks goods from him.Dearboy has M supply places (marked from 1 to M), each provides K different kinds of goods (marked from 1 to K). Once shopkeepers order goods, Dearboy should arrange which supply place provide how much amount of goods to shopkeepers to cut down the total cost of transport.

It's known that the cost to transport one unit goods for different kinds from different supply places to different shopkeepers may be different. Given each supply places' storage of K kinds of goods, N shopkeepers' order of K kinds of goods and the cost to transport goods for different kinds from different supply places to different shopkeepers, you should tell how to arrange the goods supply to minimize the total cost of transport.

Input

The input consists of multiple test cases. The first line of each test case contains three integers N, M, K (0 < N, M, K < 50), which are described above. The next N lines give the shopkeepers' orders, with each line containing K integers (there integers are belong to [0, 3]), which represents the amount of goods each shopkeeper needs. The next M lines give the supply places' storage, with each line containing K integers (there integers are also belong to [0, 3]), which represents the amount of goods stored in that supply place.

Then come K integer matrices (each with the size N * M), the integer (this integer is belong to (0, 100)) at the i-th row, j-th column in the k-th matrix represents the cost to transport one unit of k-th goods from the j-th supply place to the i-th shopkeeper.

The input is terminated with three "0"s. This test case should not be processed.

Output

For each test case, if Dearboy can satisfy all the needs of all the shopkeepers, print in one line an integer, which is the minimum cost; otherwise just output "-1".

Sample Input

1 3 3
1 1 1
0 1 1
1 2 2
1 0 1
1 2 3
1 1 1
2 1 1 1 1 1
3
2
20 0 0 0
Sample Output
4
-1

这个直接把每件物品单出来考虑完事,单独建图跑就行,然后就很简单了。就变成了普通的费用流问题,那么建图套模板即可!

#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#include<vector>
#define INF 1e9
using namespace std;
const int maxn=200+10; struct Edge
{
int from,to,cap,flow,cost;
Edge(){}
Edge(int f,int t,int c,int fl,int co):from(f),to(t),cap(c),flow(fl),cost(co){}
}; struct MCMF
{
int n,m,s,t;
vector<Edge> edges;
vector<int> G[maxn];
bool inq[maxn];
int d[maxn];
int p[maxn];
int a[maxn]; void init(int n,int s,int t)
{
this->n=n, this->s=s, this->t=t;
edges.clear();
for(int i=0;i<n;++i) G[i].clear();
} void AddEdge(int from,int to,int cap,int cost)
{
edges.push_back(Edge(from,to,cap,0,cost));
edges.push_back(Edge(to,from,0,0,-cost));
m=edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
} bool BellmanFord(int &flow, int &cost)
{
for(int i=0;i<n;++i) d[i]=INF;
memset(inq,0,sizeof(inq));
d[s]=0, a[s]=INF, inq[s]=true, p[s]=0;
queue<int> Q;
Q.push(s);
while(!Q.empty())
{
int u=Q.front(); Q.pop();
inq[u]=false;
for(int i=0;i<G[u].size();++i)
{
Edge &e=edges[G[u][i]];
if(e.cap>e.flow && d[e.to]>d[u]+e.cost)
{
d[e.to]= d[u]+e.cost;
p[e.to]=G[u][i];
a[e.to]= min(a[u],e.cap-e.flow);
if(!inq[e.to]){ Q.push(e.to); inq[e.to]=true; }
}
}
}
if(d[t]==INF) return false;
flow +=a[t];
cost +=a[t]*d[t];
int u=t;
while(u!=s)
{
edges[p[u]].flow += a[t];
edges[p[u]^1].flow -=a[t];
u = edges[p[u]].from;
}
return true;
}
int Min_cost()
{
int flow=0,cost=0;
while(BellmanFord(flow,cost));
return cost;
}
}MM; int n,m,k;
int need[50+5][50+5]; //need[i][j]表i顾客对j商品的需求量
int have[50+5][50+5]; //have[i][j]表i仓库对j商品的提供量
int cost[50+5][50+5][50+5]; //cost[x][i][j] 表j仓库到i顾客对x商品的单位运费 int main()
{
while(scanf("%d%d%d",&n,&m,&k)==3 && n)
{
int goods[maxn];//货物需求量,用来判断货物是否足够
int enough=true;//初始货物充足
memset(goods,0,sizeof(goods)); for(int i=1;i<=n;++i)
for(int j=1;j<=k;++j)
{
scanf("%d",&need[i][j]);
goods[j]+= need[i][j];
} for(int i=1;i<=m;++i)
for(int j=1;j<=k;++j)
{
scanf("%d",&have[i][j]);
goods[j] -=have[i][j];
} for(int h=1;h<=k;++h)
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
scanf("%d",&cost[h][i][j]); for(int i=1;i<=k;++i)if(goods[i]>0)//货物不足,不用计算了
{
enough=false;
break;
}
if(!enough)//初始货物不足
{
printf("-1\n");
continue;
} int min_cost=0;
for(int g=1;g<=k;++g)
{
int src=0, dst=n+m+1;
MM.init(n+m+2,src,dst);
for(int i=1;i<=m;++i) MM.AddEdge(src,i,have[i][g],0);
for(int i=1;i<=n;++i) MM.AddEdge(m+i,dst,need[i][g],0);
for(int i=1;i<=m;++i)
for(int j=1;j<=n;++j)
{
MM.AddEdge(i,j+m,INF,cost[g][j][i]);
}
min_cost += MM.Min_cost();
}
printf("%d\n",min_cost);
}
return 0;
}

图论--网络流--费用流--POJ 2156 Minimum Cost的更多相关文章

  1. 图论--网络流--费用流POJ 2195 Going Home

    Description On a grid map there are n little men and n houses. In each unit time, every little man c ...

  2. 图论--网络流--最大流--POJ 3281 Dining (超级源汇+限流建图+拆点建图)

    Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, an ...

  3. 图论--网络流--最大流--POJ 1698 Alice's Chance

    Description Alice, a charming girl, have been dreaming of being a movie star for long. Her chances w ...

  4. 图论--网络流--最大流 POJ 2289 Jamie's Contact Groups (二分+限流建图)

    Description Jamie is a very popular girl and has quite a lot of friends, so she always keeps a very ...

  5. POJ 2516 Minimum Cost (最小费用最大流)

    POJ 2516 Minimum Cost 链接:http://poj.org/problem?id=2516 题意:有M个仓库.N个商人.K种物品.先输入N,M.K.然后输入N行K个数,每一行代表一 ...

  6. POJ 2516 Minimum Cost (网络流,最小费用流)

    POJ 2516 Minimum Cost (网络流,最小费用流) Description Dearboy, a goods victualer, now comes to a big problem ...

  7. Poj 2516 Minimum Cost (最小花费最大流)

    题目链接: Poj  2516  Minimum Cost 题目描述: 有n个商店,m个仓储,每个商店和仓库都有k种货物.嘛!现在n个商店要开始向m个仓库发出订单了,订单信息为当前商店对每种货物的需求 ...

  8. 图论-zkw费用流

    图论-zkw费用流 模板 这是一个求最小费用最大流的算法,因为发明者是神仙zkw,所以叫zkw费用流(就是zkw线段树那个zkw).有些时候比EK快,有些时候慢一些,没有比普通费用流算法更难,所以学z ...

  9. POJ 2516 Minimum Cost (费用流)

    题面 Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his sale area ...

随机推荐

  1. wireshark抓包实战(四),数据包的操作

    1.标记数据包 当我们找到一个数据包感觉它很重要时,想要让它更明显怎么办呢?让它高亮即可! 具体操作: 选中某个条目,右键mark即可 2.为数据包添加注释 选中包以后,右键"分组注释&qu ...

  2. 二、Python2.7的安装并与Python3.8共存

    一:Python解释器为什么要2个版本? 众所周知,Python2.7是一个过渡版本. 很多公司写的项目并不是基于最新的Python3写的,在之后进行一些项目更改的时候,Python3的语法有一些并不 ...

  3. 复习python的__call__ __str__ __repr__ __getattr__函数 整理

    class Www: def __init__(self,name): self.name=name def __str__(self): return '名称 %s'%self.name #__re ...

  4. 杭电1080 J - Human Gene Functions

    题目大意: 两个字符串,可以再中间任何插入空格,然后让这两个串匹配,字符与字符之间的匹配有各自的分数,求最大分数 最长公共子序列模型. dp[i][j]表示当考虑吧串1的第i个字符和串2的第j个字符时 ...

  5. Linux相关操作

    ssh配置秘钥 连接远程服务器时:需要用户持有“公钥/私钥对”,远程服务器持有公钥,本地持有私钥. 客户端向服务器发出请求.服务器收到请求之后,先在用户的主目录下找到该用户的公钥,然后对比用户发送过来 ...

  6. Linux学习笔记(一)目录处理命令

    目录处理命令 ls cd mkdir rmdir tree ls 英文原意: list 功能: 显示目录文件 语法: ls 选项[-ald] [文件或目录] ls -a 显示所有文件,包括隐藏文件 l ...

  7. Python 类学习的一些Tips

    这里不详细介绍类,只总结一些小萌新在学习python 类时会有的一些疑点. 类的私有性 在python中,属性和方法的访问权限只有两种,公开的,和私有的.在给属性命名时用两个“__”下划线作为开头,就 ...

  8. Laravel 5.8 RCE 分析

    原帖地址 : https://xz.aliyun.com/t/6059 Laravel 代码审计 环境搭建 composer create-project --prefer-dist laravel/ ...

  9. ASP.NET Core技术研究-全面认识Web服务器Kestrel

    因为IIS不支持跨平台的原因,我们在升级到ASP.NET Core后,会接触到一个新的Web服务器Kestrel.相信大家刚接触这个Kestrel时,会有各种各样的疑问. 今天我们全面认识一下ASP. ...

  10. 两种异常(CPU异常、用户模拟异常)的收集

    Windows内核分析索引目录:https://www.cnblogs.com/onetrainee/p/11675224.html 两种异常(CPU异常.用户模拟异常)的收集  文章的核心:异常收集 ...