图论--网络流--费用流--POJ 2156 Minimum Cost
Description
Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his sale area there are N shopkeepers (marked from 1 to N) which stocks goods from him.Dearboy has M supply places (marked from 1 to M), each provides K different kinds of goods (marked from 1 to K). Once shopkeepers order goods, Dearboy should arrange which supply place provide how much amount of goods to shopkeepers to cut down the total cost of transport.
It's known that the cost to transport one unit goods for different kinds from different supply places to different shopkeepers may be different. Given each supply places' storage of K kinds of goods, N shopkeepers' order of K kinds of goods and the cost to transport goods for different kinds from different supply places to different shopkeepers, you should tell how to arrange the goods supply to minimize the total cost of transport.
Input
The input consists of multiple test cases. The first line of each test case contains three integers N, M, K (0 < N, M, K < 50), which are described above. The next N lines give the shopkeepers' orders, with each line containing K integers (there integers are belong to [0, 3]), which represents the amount of goods each shopkeeper needs. The next M lines give the supply places' storage, with each line containing K integers (there integers are also belong to [0, 3]), which represents the amount of goods stored in that supply place.
Then come K integer matrices (each with the size N * M), the integer (this integer is belong to (0, 100)) at the i-th row, j-th column in the k-th matrix represents the cost to transport one unit of k-th goods from the j-th supply place to the i-th shopkeeper.
The input is terminated with three "0"s. This test case should not be processed.
Output
For each test case, if Dearboy can satisfy all the needs of all the shopkeepers, print in one line an integer, which is the minimum cost; otherwise just output "-1".
Sample Input
1 3 3
1 1 1
0 1 1
1 2 2
1 0 1
1 2 3
1 1 1
2 1 1 1 1 1
3
2
20 0 0 0
Sample Output
4
-1
这个直接把每件物品单出来考虑完事,单独建图跑就行,然后就很简单了。就变成了普通的费用流问题,那么建图套模板即可!
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#include<vector>
#define INF 1e9
using namespace std;
const int maxn=200+10;
struct Edge
{
int from,to,cap,flow,cost;
Edge(){}
Edge(int f,int t,int c,int fl,int co):from(f),to(t),cap(c),flow(fl),cost(co){}
};
struct MCMF
{
int n,m,s,t;
vector<Edge> edges;
vector<int> G[maxn];
bool inq[maxn];
int d[maxn];
int p[maxn];
int a[maxn];
void init(int n,int s,int t)
{
this->n=n, this->s=s, this->t=t;
edges.clear();
for(int i=0;i<n;++i) G[i].clear();
}
void AddEdge(int from,int to,int cap,int cost)
{
edges.push_back(Edge(from,to,cap,0,cost));
edges.push_back(Edge(to,from,0,0,-cost));
m=edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool BellmanFord(int &flow, int &cost)
{
for(int i=0;i<n;++i) d[i]=INF;
memset(inq,0,sizeof(inq));
d[s]=0, a[s]=INF, inq[s]=true, p[s]=0;
queue<int> Q;
Q.push(s);
while(!Q.empty())
{
int u=Q.front(); Q.pop();
inq[u]=false;
for(int i=0;i<G[u].size();++i)
{
Edge &e=edges[G[u][i]];
if(e.cap>e.flow && d[e.to]>d[u]+e.cost)
{
d[e.to]= d[u]+e.cost;
p[e.to]=G[u][i];
a[e.to]= min(a[u],e.cap-e.flow);
if(!inq[e.to]){ Q.push(e.to); inq[e.to]=true; }
}
}
}
if(d[t]==INF) return false;
flow +=a[t];
cost +=a[t]*d[t];
int u=t;
while(u!=s)
{
edges[p[u]].flow += a[t];
edges[p[u]^1].flow -=a[t];
u = edges[p[u]].from;
}
return true;
}
int Min_cost()
{
int flow=0,cost=0;
while(BellmanFord(flow,cost));
return cost;
}
}MM;
int n,m,k;
int need[50+5][50+5]; //need[i][j]表i顾客对j商品的需求量
int have[50+5][50+5]; //have[i][j]表i仓库对j商品的提供量
int cost[50+5][50+5][50+5]; //cost[x][i][j] 表j仓库到i顾客对x商品的单位运费
int main()
{
while(scanf("%d%d%d",&n,&m,&k)==3 && n)
{
int goods[maxn];//货物需求量,用来判断货物是否足够
int enough=true;//初始货物充足
memset(goods,0,sizeof(goods));
for(int i=1;i<=n;++i)
for(int j=1;j<=k;++j)
{
scanf("%d",&need[i][j]);
goods[j]+= need[i][j];
}
for(int i=1;i<=m;++i)
for(int j=1;j<=k;++j)
{
scanf("%d",&have[i][j]);
goods[j] -=have[i][j];
}
for(int h=1;h<=k;++h)
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
scanf("%d",&cost[h][i][j]);
for(int i=1;i<=k;++i)if(goods[i]>0)//货物不足,不用计算了
{
enough=false;
break;
}
if(!enough)//初始货物不足
{
printf("-1\n");
continue;
}
int min_cost=0;
for(int g=1;g<=k;++g)
{
int src=0, dst=n+m+1;
MM.init(n+m+2,src,dst);
for(int i=1;i<=m;++i) MM.AddEdge(src,i,have[i][g],0);
for(int i=1;i<=n;++i) MM.AddEdge(m+i,dst,need[i][g],0);
for(int i=1;i<=m;++i)
for(int j=1;j<=n;++j)
{
MM.AddEdge(i,j+m,INF,cost[g][j][i]);
}
min_cost += MM.Min_cost();
}
printf("%d\n",min_cost);
}
return 0;
}
图论--网络流--费用流--POJ 2156 Minimum Cost的更多相关文章
- 图论--网络流--费用流POJ 2195 Going Home
Description On a grid map there are n little men and n houses. In each unit time, every little man c ...
- 图论--网络流--最大流--POJ 3281 Dining (超级源汇+限流建图+拆点建图)
Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, an ...
- 图论--网络流--最大流--POJ 1698 Alice's Chance
Description Alice, a charming girl, have been dreaming of being a movie star for long. Her chances w ...
- 图论--网络流--最大流 POJ 2289 Jamie's Contact Groups (二分+限流建图)
Description Jamie is a very popular girl and has quite a lot of friends, so she always keeps a very ...
- POJ 2516 Minimum Cost (最小费用最大流)
POJ 2516 Minimum Cost 链接:http://poj.org/problem?id=2516 题意:有M个仓库.N个商人.K种物品.先输入N,M.K.然后输入N行K个数,每一行代表一 ...
- POJ 2516 Minimum Cost (网络流,最小费用流)
POJ 2516 Minimum Cost (网络流,最小费用流) Description Dearboy, a goods victualer, now comes to a big problem ...
- Poj 2516 Minimum Cost (最小花费最大流)
题目链接: Poj 2516 Minimum Cost 题目描述: 有n个商店,m个仓储,每个商店和仓库都有k种货物.嘛!现在n个商店要开始向m个仓库发出订单了,订单信息为当前商店对每种货物的需求 ...
- 图论-zkw费用流
图论-zkw费用流 模板 这是一个求最小费用最大流的算法,因为发明者是神仙zkw,所以叫zkw费用流(就是zkw线段树那个zkw).有些时候比EK快,有些时候慢一些,没有比普通费用流算法更难,所以学z ...
- POJ 2516 Minimum Cost (费用流)
题面 Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his sale area ...
随机推荐
- Eclipse(Eclipse for android)代码自动提示设置
java代码和xml资源代码在有的eclipse中可以自己提示,但有的并不支持这个功能,还得我们人为去调整,主要原因是因为你们下载的elipse的渠道不同,获得的版本有的官方原版,有的是个人备份版等等 ...
- 学习《深入应用c++11》1
C++11 让程序更简洁.更优雅 可调用对象 是一个函数指针 是一个具有operator()成员函数的类对象(仿函数) 是一个可被装换为函数指针的类对象 是一个类的成员(函数)指针 void func ...
- leetcode c++做题思路和题解(5)——堆的例题和总结
堆和优先队列 堆的简介, 是一种二叉树, 有最大堆和最小堆miniheap. 通常用于构建优先队列. 0. 目录 数据流中的第K大元素 1. 数据流中的第K大元素 数据流中的第K大元素 复杂度为log ...
- Redis学习一:Redis两种持久化机制
申明 本文章首发自本人公众号:壹枝花算不算浪漫,如若转载请标明来源! 感兴趣的小伙伴可关注个人公众号:壹枝花算不算浪漫 22.jpg 前言 Redis是基于内存来实现的NO SQL数据库,但是我么你都 ...
- 漏洞复现环境集锦-Vulhub
0x01 Vulhub简介 Vulhub是一个面向大众的开源漏洞靶场,无需docker知识,简单执行两条命令即可编译.运行一个完整的漏洞靶场镜像. 0x02 安装 # 安装pip curl -s ht ...
- js数组的遍历(API)
1.for 循环 普通遍历方法,可优化,存下数组的length,避免每次都去获取数组的length,性能提升 for(var i=0;i<arr.length;i++){ console.log ...
- Floyd-例题-实现-我的第一篇博客
https://www.cnblogs.com/lbssxz/p/11014911.html 这是网上看到的题目,以上是原博主的解答和题目来源(没找到别的题目来源) 题目大意: 城市交通费 [问题描述 ...
- matlab计算LZ复杂度
我这个计算得14通道,每个通道截取3000个数据得复杂度,最后将计算得出得数据存储到本地txt文档中 function LZC(data) % 计算一维信号的复杂度 % data时间序列 % lzc: ...
- 一文回顾Reids五大对象(数据类型)
Redis 是一个高性能的分布式内存型数据库,在国内外各大互联网公司中都有着广泛的使用,即使是一些非互联网公司中也有着非常重要的适用场景,所以对 Redis 的掌握也成为后端工程师必备的基础技能,在面 ...
- 百度关键词搜索工具 v1.1|url采集工具 v1.1
功能介绍:关键词搜索工具 批量关键词自动搜索采集 自动去除垃圾二级泛解析域名 可设置是否保存域名或者url 持续更新中