图论--双连通E-DCC缩点模板
// tarjan算法求无向图的桥、边双连通分量并缩点
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int SIZE = 100010;
int head[SIZE], ver[SIZE * 2], Next[SIZE * 2];
int dfn[SIZE], low[SIZE], c[SIZE];
int n, m, tot, num, dcc, tc;
bool bridge[SIZE * 2];
int hc[SIZE], vc[SIZE * 2], nc[SIZE * 2];
void add(int x, int y) {
ver[++tot] = y, Next[tot] = head[x], head[x] = tot;
}
void add_c(int x, int y) {
vc[++tc] = y, nc[tc] = hc[x], hc[x] = tc;
}
void tarjan(int x, int in_edge) {
dfn[x] = low[x] = ++num;
for (int i = head[x]; i; i = Next[i]) {
int y = ver[i];
if (!dfn[y]) {
tarjan(y, i);
low[x] = min(low[x], low[y]);
if (low[y] > dfn[x])
bridge[i] = bridge[i ^ 1] = true;
}
else if (i != (in_edge ^ 1))
low[x] = min(low[x], dfn[y]);
}
}
void dfs(int x) {
c[x] = dcc;
for (int i = head[x]; i; i = Next[i]) {
int y = ver[i];
if (c[y] || bridge[i]) continue;
dfs(y);
}
}
int main() {
cin >> n >> m;
tot = 1;
for (int i = 1; i <= m; i++) {
int x, y;
scanf("%d%d", &x, &y);
add(x, y), add(y, x);
}
for (int i = 1; i <= n; i++)
if (!dfn[i]) tarjan(i, 0);
for (int i = 2; i < tot; i += 2)
if (bridge[i])
printf("%d %d\n", ver[i ^ 1], ver[i]);
for (int i = 1; i <= n; i++)
if (!c[i]) {
++dcc;
dfs(i);
}
printf("There are %d e-DCCs.\n", dcc);
for (int i = 1; i <= n; i++)
printf("%d belongs to DCC %d.\n", i, c[i]);
tc = 1;
for (int i = 2; i <= tot; i++) {
int x = ver[i ^ 1], y = ver[i];
if (c[x] == c[y]) continue;
add_c(c[x], c[y]);
}
printf("缩点之后的森林,点数 %d,边数 %d\n", dcc, tc / 2);
for (int i = 2; i < tc; i += 2)
printf("%d %d\n", vc[i ^ 1], vc[i]);
}
图论--双连通E-DCC缩点模板的更多相关文章
- POJ-3352 Road Construction,tarjan缩点求边双连通!
Road Construction 本来不想做这个题,下午总结的时候发现自己花了一周的时间学连通图却连什么是边双连通不清楚,于是百度了一下相关内容,原来就是一个点到另一个至少有两条不同的路. 题意:给 ...
- 图论之tarjan真乃神人也,强连通分量,割点,桥,双连通他都会
先来%一下Robert Tarjan前辈 %%%%%%%%%%%%%%%%%% 然后是热情感谢下列并不止这些大佬的博客: 图连通性(一):Tarjan算法求解有向图强连通分量 图连通性(二):Tarj ...
- hdu 4612 Warm up 双连通缩点+树的直径
首先双连通缩点建立新图(顺带求原图的总的桥数,事实上因为原图是一个强连通图,所以桥就等于缩点后的边) 此时得到的图类似树结构,对于新图求一次直径,也就是最长链. 我们新建的边就一定是连接这条最长链的首 ...
- POJ 3177 Redundant Paths (边双连通+缩点)
<题目链接> <转载于 >>> > 题目大意: 有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新 ...
- 边双连通缩点+树dp 2015 ACM Arabella Collegiate Programming Contest的Gym - 100676H
http://codeforces.com/gym/100676/attachments 题目大意: 有n个城市,有m条路,每条路都有边长,如果某几个城市的路能组成一个环,那么在环中的这些城市就有传送 ...
- UVA 10972 RevolC FaeLoN(边-双连通+缩点)
很好的一道图论题,整整撸了一上午... 题意是给定一个无向图,要求将所有边变为有向边,求最少加入多少条有向边,使得该图强连通?这里先假设一个问题:给定一个无向子图,该子图具有怎样的性质才能使得将其无向 ...
- HDU4612Warm up 边双连通 Tarjan缩点
N planets are connected by M bidirectional channels that allow instant transportation. It's always p ...
- POJ - 3177 Redundant Paths (边双连通缩点)
题意:在一张图中最少可以添加几条边,使其中任意两点间都有两条不重复的路径(路径中任意一条边都不同). 分析:问题就是最少添加几条边,使其成为边双连通图.可以先将图中所有边双连通分量缩点,之后得到的就是 ...
- poj3352Road Construction 边双连通+伪缩点
/* 对于边双连通分支,求法更为简单. 仅仅需在求出全部的桥以后,把桥边删除.\ 原图变成了多个连通块,则每一个连通块就是一个边双连通分支. 桥不属于不论什么 一个边双连通分支,其余的边和每一个顶点都 ...
随机推荐
- 【Mongodb】视图 && 索引
准备工作 准备2个集合的数据,后面视图和索引都会用到1个订单集合,一个收款信息集合 var orders = new Array(); var shipping = new Array(); var ...
- Java Random 随机数
package myrandom; import java.util.Random; /* * Random:用于产生随机数 * * 使用步骤: * A:导包 * import java.util.R ...
- Python爬虫系列(二):requests基础
1.发送请求: import requests # 获取数据#r是一个 response 对象.包含请求返回的内容r = requests.get('https://github.com/timeli ...
- 数据结构和算法(Golang实现)(17)常见数据结构-树
树 树是一种比较高级的基础数据结构,由n个有限节点组成的具有层次关系的集合. 树的定义: 有节点间的层次关系,分为父节点和子节点. 有唯一一个根节点,该根节点没有父节点. 除了根节点,每个节点有且只有 ...
- 5分钟python爬虫案例,手把手教爬取国内外最新疫情历史数据
俗话说的好,“授之以鱼不如授之以渔”,所以小编今天就把爬疫情历史数据的方法分享给你们. 基本思路:分析腾讯新闻“抗肺炎”版块,采用“倒推法”找到疫情数据接口,然后用python模拟请求,进而保存疫情历 ...
- ASE课程总结 by 冯晓云
开始的开始,采访往届ASE班的blog:http://www.cnblogs.com/legs/p/4894362.html 和北航软工M1检查:http://www.cnblogs.com/legs ...
- stand up meeting 12-3
因为前后端在参数传递定义不清晰的原因,今天士杰和国庆采用了pair programming的方法,在一台电脑前工作了四十分钟,明确了请求questionpool,请求question,请求rank d ...
- stand up meeting 12/29/2015
part 组员 今日工作 工作耗时/h 明日计划 工作耗时/h UI 冯晓云 重写popup UI添加笔记功能 6 mergeUI ...
- skynet启动流程及调用服务
3.基本原理 3.1启动流程 1.skynet-src/skynet_main.c 这个是main()函数所在,主要就是设置一下lua的环境.默认的配置.打开config配置文件,并修改默认配置. ...
- 架构师修炼之微服务部署 - Docker简介
Docker简介 Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器或Windows 机器上,也可以实现虚拟化,容器是 ...