USACO Training Section 1.2 [USACO1.2]方块转换 Transformations
题目描述
一块N x N(1<=N<=10)正方形的黑白瓦片的图案要被转换成新的正方形图案。写一个程序来找出将原始图案按照以下列转换方法转换成新图案的最小方式:
1:转90度:图案按顺时针转90度。
2:转180度:图案按顺时针转180度。
3:转270度:图案按顺时针转270度。
4:反射:图案在水平方向翻转(以中央铅垂线为中心形成原图案的镜像)。
5:组合:图案在水平方向翻转,然后再按照1到3之间的一种再次转换。
6:不改变:原图案不改变。
7:无效转换:无法用以上方法得到新图案。
如果有多种可用的转换方法,请选择序号最小的那个。
只使用1–7中的一个步骤来完成这次转换。
输入输出格式
输入格式:
第一行: 单独的一个整数N。
第二行到第N+1行: N行每行N个字符(不是“@”就是“-”);这是转换前的正方形。
第N+2行到第2*N+1行: N行每行N个字符(不是“@”就是“-”);这是转换后的正方形。
输出格式:
单独的一行包括1到7之间的一个数字(在上文已描述)表明需要将转换前的正方形变为转换后的正方形的转换方法。
输入输出样例
输入样例#1:
3
@-@
---
@@-
@-@
@--
--@
输出样例#1:
1
说明
题目翻译来自NOCOW。
这个题其实可以输入循环中就能把答案求出来,但是因为这个题比较简单,为了复习一下函数传二维数组的方法。比较好写,写一个旋转90°的函数,180就是旋转两次,270就是3次。然后镜像什么的再求也就容易很多。
下面是AC代码
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
using namespace std;
char ob[11][11];
char ob2[11][11];
char obj1[11][11];
char obj2[11][11];
char obj3[11][11];
char obj4[11][11];
char obj5[11][11];
char obj6[11][11];
char obj7[11][11];
int n;
void zh(char a[][11],char b[][11]);
bool db(char a[][11],char b[][11]);
int main()
{
scanf("%d",&n);
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
{
scanf(" %c",&ob[i][j]);
obj4[i][n+1-j]= ob[i][j];
}
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
scanf(" %c",&ob2[i][j]);
zh(ob,obj1);
zh(obj1,obj2);
zh(obj2,obj3);
zh(obj4,obj5);
zh(obj5,obj6);
zh(obj6,obj7);
if(db(ob2,obj1) )cout<<1<<endl;
else if(db(ob2,obj2) )cout<<2<<endl;
else if(db(ob2,obj3) )cout<<3<<endl;
else if(db(ob2,obj4) )cout<<4<<endl;
else if(db(ob2,obj5) )cout<<5<<endl;
else if( db(ob2,obj6) )cout<<5<<endl;
else if( db(ob2,obj7) )cout<<5<<endl;
else if(db(ob2,ob) )cout<<6<<endl;
else cout<<7<<endl;
return 0;
}
void zh(char a[][11],char b[][11])
{
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
{
b[i][j]=a[n+1-j][i];
}
}
bool db(char a[][11],char b[][11])
{
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
{
if(b[i][j]!=a[i][j])
return 0;
}
return 1;
}
USACO Training Section 1.2 [USACO1.2]方块转换 Transformations的更多相关文章
- 洛谷 P1205 [USACO1.2]方块转换 Transformations
P1205 [USACO1.2]方块转换 Transformations 题目描述 一块N x N(1<=N<=10)正方形的黑白瓦片的图案要被转换成新的正方形图案.写一个程序来找出将原始 ...
- USACO Training Section 1.2 [USACO1.2]回文平方数
题目描述 回文数是指从左向右念和从右向左念都一样的数.如12321就是一个典型的回文数. 给定一个进制B(2<=B<=20,由十进制表示),输出所有的大于等于1小于等于300(十进制下)且 ...
- [USACO1.2.2]方块转换 Transformations
P1205 [USACO1.2]方块转换 Transformations 标签 搜索/枚举 USACO 题目描述 一块N x N(1<=N<=10)正方形的黑白瓦片的图案要被转换成新的正方 ...
- USACO Training Section 1.1 贪婪的送礼者Greedy Gift Givers
P1201 [USACO1.1]贪婪的送礼者Greedy Gift Givers 题目描述 对于一群(NP个)要互送礼物的朋友,GY要确定每个人送出的钱比收到的多多少.在这一个问题中,每个人都准备了一 ...
- USACO Training Section 1.1 坏掉的项链Broken Necklace
题目描述 你有一条由N个红色的,白色的,或蓝色的珠子组成的项链(3<=N<=350),珠子是随意安排的. 这里是 n=29 的二个例子: 第一和第二个珠子在图片中已经被作记号. 图片 A ...
- USACO Training Section 1.1 Your Ride Is Here
题目描述 众所周知,在每一个彗星后都有一只UFO.这些UFO时常来收集地球上的忠诚支持者.不幸的是,他们的飞碟每次出行都只能带上一组支持者.因此,他们要用一种聪明的方案让这些小组提前知道谁会被彗星带走 ...
- USACO Training Section 1.2 双重回文数 Dual Palindrom
题目描述 如果一个数从左往右读和从右往左读都是一样,那么这个数就叫做"回文数".例如,12321就是一个回文数,而77778就不是.当然,回文数的首和尾都应是非零的,因此0220就 ...
- USACO Training Section 1.1 题解(共4题)
第一题 题目传送门:你的飞碟在这儿 分析 水题一道,输入两个字符串,将它们转换为数字并同时相乘,然后判断一下它们是不是对于47同余就可以了. 代码 #include<bits/stdc++.h& ...
- 等差数列 [USACO Training Section 1.4]
题目描述 一个等差数列是一个能表示成a, a+b, a+2b,…, a+nb (n=0,1,2,3,…)的数列. 在这个问题中a是一个非负的整数,b是正整数.写一个程序来找出在双平方数集合(双平方数集 ...
随机推荐
- Unity Shader and Effects Cookbook问题记录
1.p61的specular计算,涉及到的一个参数“_SpecColor”是在Unity的官方cginc文件(UnityLightingCommon.cginc)中,是直接赋颜色给这个参数,反应到你模 ...
- Linux网络架设篇,虚拟机l系统中网卡设备名与配置文件不符如何处理?
很多情况下,当我们在虚拟机中安装好linux系统后,并不能成功连上网.当我们配置好相关IP地址后同样不能成功连接网络.并且会体会网卡名与配置名不符,这时候应该怎么办呢? 1.清空下面文件 /etc/u ...
- 2017蓝桥杯等差素数(C++B组)
题目 : 等差素数列 2,3,5,7,11,13,....是素数序列.类似:7,37,67,97,127,157 ...
- 2015蓝桥杯五星填数(C++C组)
题目:五星填数 如[图1.png]的五星图案节点填上数字:1~12,除去7和11.要求每条直线上数字和相等.如图就是恰当的填法.请你利用计算机搜索所有可能的填法有多少种.注意:旋转或镜像后相同的算同一 ...
- C语言中 sinx cosx 的用法
#include<stdio.h> #include<math.h> int main() { double pi=acos(-1.0); double ang ...
- CH5105 Cookies (线性dp)
传送门 解题思路: 贪心的想,贪婪值越大的孩子应该分得更多的饼干,那么先sort一遍在此基础上进行dp.最直观的方向,可以设dp[i][j]为前i个孩子一共分得j块饼干的怨恨最小值.然后转移第i+1个 ...
- 【python实现卷积神经网络】卷积层Conv2D反向传播过程
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...
- 数据结构(C语言版)---线性表链式存储表示
1.单链表:线性表的链式存储. 1)特点:用一组任意的存储单元存储数据元素(存储单元可以连续,也可以不连续),逻辑上相邻的元素存储位置不一定相邻. 2)结点包括两个域:数据域(存储数据元素信息).指针 ...
- reactnavigation 5.x简单例子
随着RN和reactnavigation的版本更新,网上很多老版的例子都不能用了. 自己摸索着跑通了一些简单的功能. 使用的是最新的 "react-native": &quo ...
- mongodb的远程连接和配置(阿里ECS)
1.) 首先安装mongodb 2.)配置mongodb.conf bind_ip = 0.0.0.0 port= dbpath=/root/mongodb/mongodb-linux-x86_64- ...