.\linux-2.6.22.6_vscode\include\linux\list.h

#ifndef _LINUX_LIST_H
#define _LINUX_LIST_H

#ifdef __KERNEL__

#include <linux/stddef.h>
#include <linux/poison.h>
#include <linux/prefetch.h>
#include <asm/system.h>

/*
* Simple doubly linked list implementation.
*
* Some of the internal functions ("__xxx") are useful when
* manipulating whole lists rather than single entries, as
* sometimes we already know the next/prev entries and we can
* generate better code by using them directly rather than
* using the generic single-entry routines.

*/

 

//链表头

struct list_head {
        struct list_head *next, *prev;
};

 
 

//(静态)初始化链表头

#define LIST_HEAD_INIT(name) { &(name), &(name) }

#define LIST_HEAD(name) \
struct list_head name = LIST_HEAD_INIT(name)

 
 

//(动态)初始化链表头

static inline void INIT_LIST_HEAD(struct list_head *list)
{
list->next = list;
list->prev = list;
}

/*
* Insert a new entry between two known consecutive entries.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
#ifndef CONFIG_DEBUG_LIST
static inline void __list_add(struct list_head *new,
                         struct list_head *prev,
                         struct list_head *next)
{
        next->prev = new;
        new->next = next;
        new->prev = prev;
        prev->next = new;
}
#else
extern void __list_add(struct list_head *new,
                         struct list_head *prev,
                         struct list_head *next);
#endif

/**
* list_add - add a new entry
* @new: new entry to be added
* @head: list head to add it after
*
* Insert a new entry after the specified head.
* This is good for implementing stacks.
*/
#ifndef CONFIG_DEBUG_LIST
static inline void list_add(struct list_head *new, struct list_head *head)
{
        __list_add(new, head, head->next);
}
#else
extern void list_add(struct list_head *new, struct list_head *head);
#endif

/**
* list_add_tail - add a new entry
* @new: new entry to be added
* @head: list head to add it before
*
* Insert a new entry before the specified head.
* This is useful for implementing queues.
*/
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
        __list_add(new, head->prev, head);
}

/*
* Insert a new entry between two known consecutive entries.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static inline void __list_add_rcu(struct list_head * new,
                struct list_head * prev, struct list_head * next)
{
        new->next = next;
        new->prev = prev;
        smp_wmb(); //smp_wmb()防止编译器和CPU优化代码执行的顺序。在这里,smp_wmb保证在它之前的两行代码执行完了之后再执行后两行.

//如果没有smp_wmb,代码在CPU中执行的顺序可能和源代码里的不一样!

        next->prev = new;
        prev->next = new;
}

/**
* list_add_rcu - add a new entry to rcu-protected list
* @new: new entry to be added
* @head: list head to add it after
*
* Insert a new entry after the specified head.
* This is good for implementing stacks.
*
* The caller must take whatever precautions are necessary
* (such as holding appropriate locks) to avoid racing
* with another list-mutation primitive, such as list_add_rcu()
* or list_del_rcu(), running on this same list.
* However, it is perfectly legal to run concurrently with
* the _rcu list-traversal primitives, such as
* list_for_each_entry_rcu().
*/
static inline void list_add_rcu(struct list_head *new, struct list_head *head)
{
        __list_add_rcu(new, head, head->next);
}

/**
* list_add_tail_rcu - add a new entry to rcu-protected list
* @new: new entry to be added
* @head: list head to add it before
*
* Insert a new entry before the specified head.
* This is useful for implementing queues.
*
* The caller must take whatever precautions are necessary
* (such as holding appropriate locks) to avoid racing
* with another list-mutation primitive, such as list_add_tail_rcu()
* or list_del_rcu(), running on this same list.
* However, it is perfectly legal to run concurrently with
* the _rcu list-traversal primitives, such as
* list_for_each_entry_rcu().
*/
static inline void list_add_tail_rcu(struct list_head *new,
                                        struct list_head *head)
{
        __list_add_rcu(new, head->prev, head);
}

/*
* Delete a list entry by making the prev/next entries
* point to each other.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static inline void __list_del(struct list_head * prev, struct list_head * next)
{
        next->prev = prev;
        prev->next = next;
}

/**
* list_del - deletes entry from list.
* @entry: the element to delete from the list.
* Note: list_empty() on entry does not return true after this, the entry is
* in an undefined state.
*/
#ifndef CONFIG_DEBUG_LIST
static inline void list_del(struct list_head *entry)
{
        __list_del(entry->prev, entry->next);
        entry->next = LIST_POISON1;
        entry->prev = LIST_POISON2;
}
#else
extern void list_del(struct list_head *entry);
#endif

/**
* list_del_rcu - deletes entry from list without re-initialization
* @entry: the element to delete from the list.
*
* Note: list_empty() on entry does not return true after this,
* the entry is in an undefined state. It is useful for RCU based
* lockfree traversal.
*
* In particular, it means that we can not poison the forward
* pointers that may still be used for walking the list.
*
* The caller must take whatever precautions are necessary
* (such as holding appropriate locks) to avoid racing
* with another list-mutation primitive, such as list_del_rcu()
* or list_add_rcu(), running on this same list.
* However, it is perfectly legal to run concurrently with
* the _rcu list-traversal primitives, such as
* list_for_each_entry_rcu().
*
* Note that the caller is not permitted to immediately free
* the newly deleted entry. Instead, either synchronize_rcu()
* or call_rcu() must be used to defer freeing until an RCU
* grace period has elapsed.
*/
static inline void list_del_rcu(struct list_head *entry)
{
        __list_del(entry->prev, entry->next);
        entry->prev = LIST_POISON2;
}

/**
* list_replace - replace old entry by new one
* @old : the element to be replaced
* @new : the new element to insert
*
* If @old was empty, it will be overwritten.
*/
static inline void list_replace(struct
list_head *old,
                                struct list_head *new)
{
        new->next = old->next;
        new->next->prev = new;
        new->prev = old->prev;
        new->prev->next = new;
}

static inline void list_replace_init(struct list_head *old,
                                        struct list_head *new)
{
        list_replace(old, new);
        INIT_LIST_HEAD(old);
}

/**
* list_replace_rcu - replace old entry by new one
* @old : the element to be replaced
* @new : the new element to insert
*
* The @old entry will be replaced with the @new entry atomically.
* Note: @old should not be empty.
*/
static inline void list_replace_rcu(struct list_head *old,
                                struct list_head *new)
{
        new->next = old->next;
        new->prev = old->prev;
        smp_wmb();
        new->next->prev = new;
        new->prev->next = new;
        old->prev = LIST_POISON2;
}

/**
* list_del_init - deletes entry from list and reinitialize it.
* @entry: the element to delete from the list.
*/
static inline void list_del_init(struct list_head *entry)
{
        __list_del(entry->prev, entry->next);
        INIT_LIST_HEAD(entry);
}

/**
* list_move - delete from one list and add as another's head
* @list: the entry to move
* @head: the head that will precede our entry
*/
static inline void list_move(struct list_head *list, struct list_head *head)
{
        __list_del(list->prev, list->next);
        list_add(list, head);
}

/**
* list_move_tail - delete from one list and add as another's tail
* @list: the entry to move
* @head: the head that will follow our entry
*/
static inline void list_move_tail(struct list_head *list,
                                 struct list_head *head)
{
        __list_del(list->prev, list->next);
        list_add_tail(list, head);
}

/**
* list_is_last - tests whether @list is the last entry in list @head
* @list: the entry to test
* @head: the head of the list
*/
static inline int list_is_last(const struct list_head *list,
                                const struct list_head *head)
{
        return list->next == head;
}

/**
* list_empty - tests whether a list is empty
* @head: the list to test.
*/
static inline int list_empty(const struct list_head *head)
{
        return head->next == head;
}

/**
* list_empty_careful - tests whether a list is empty and not being modified
* @head: the list to test
*
* Description:
* tests whether a list is empty _and_ checks that no other CPU might be
* in the process of modifying either member (next or prev)
*
* NOTE: using list_empty_careful() without synchronization
* can only be safe if the only activity that can happen
* to the list entry is list_del_init(). Eg. it cannot be used
* if another CPU could re-list_add() it.
*/
static inline int list_empty_careful(const struct list_head *head)
{
        struct list_head *next = head->next;
        return (next == head) && (next == head->prev);
}

static inline void __list_splice(struct list_head *list,
                                 struct list_head *head)
{
        struct list_head *first = list->next;
        struct list_head *last = list->prev;
        struct list_head *at = head->next;

        first->prev = head;
        head->next = first;

        last->next = at;
        at->prev = last;
}

/**
* list_splice - join two lists
* @list: the new list to add.
* @head: the place to add it in the first list.
*/
static inline void list_splice(struct list_head *list, struct list_head *head)
{
        if (!list_empty(list))
                __list_splice(list, head);
}

/**
* list_splice_init - join two lists and reinitialise the emptied list.
* @list: the new list to add.
* @head: the place to add it in the first list.
*
* The list at @list is reinitialised
*/
static inline void list_splice_init(struct list_head *list,
357                                  struct list_head *head)
358 {
359         if (!list_empty(list)) {
360                 __list_splice(list, head);
361                 INIT_LIST_HEAD(list);
362         }
363 }
364
365 /**
366 * list_splice_init_rcu - splice an RCU-protected list into an existing list.
367 * @list:        the RCU-protected list to splice
368 * @head:        the place in the list to splice the first list into
369 * @sync:        function to sync: synchronize_rcu(), synchronize_sched(), ...
370 *
371 * @head can be RCU-read traversed concurrently with this function.
372 *
373 * Note that this function blocks.
374 *
375 * Important note: the caller must take whatever action is necessary to
376 *        prevent any other updates to @head. In principle, it is possible
377 *        to modify the list as soon as sync() begins execution.
378 *        If this sort of thing becomes necessary, an alternative version
379 *        based on call_rcu() could be created. But only if -really-
380 *        needed -- there is no shortage of RCU API members.
381 */
382 static inline void list_splice_init_rcu(struct list_head *list,
383                                         struct list_head *head,
384                                         void (*sync)(void))
385 {
386         struct list_head *first = list->next;
387         struct list_head *last = list->prev;
388         struct list_head *at = head->next;
389
390         if (list_empty(head))
391                 return;
392
393         /* "first" and "last" tracking list, so initialize it. */
394
395         INIT_LIST_HEAD(list);
396
397         /*
398          * At this point, the list body still points to the source list.
399          * Wait for any readers to finish using the list before splicing
400          * the list body into the new list. Any new readers will see
401          * an empty list.
402          */
403
404         sync();
405
406         /*
407          * Readers are finished with the source list, so perform splice.
408          * The order is important if the new list is global and accessible
409          * to concurrent RCU readers. Note that RCU readers are not
410          * permitted to traverse the prev pointers without excluding
411          * this function.
412          */
413
414         last->next = at;
415         smp_wmb();
416         head->next = first;
417         first->prev = head;
418         at->prev = last;
419 }
420
421 /**
422 * list_entry - get the struct for this entry
423 * @ptr:        the &struct list_head pointer.
424 * @type:        the type of the struct this is embedded in.
425 * @member:        the name of the list_struct within the struct.
426 */
427 #define list_entry(ptr, type, member) \
428         container_of(ptr, type, member)
429
430 /**
431 * list_first_entry - get the first element from a list
432 * @ptr:        the list head to take the element from.
433 * @type:        the type of the struct this is embedded in.
434 * @member:        the name of the list_struct within the struct.
435 *
436 * Note, that list is expected to be not empty.
437 */
438 #define list_first_entry(ptr, type, member) \
439         list_entry((ptr)->next, type, member)
440
441 /**
442 * list_for_each        -        iterate over a list
443 * @pos:        the &struct list_head to use as a loop cursor.
444 * @head:        the head for your list.
445 */
446 #define list_for_each(pos, head) \
447         for (pos = (head)->next; prefetch(pos->next), pos != (head); \
448         pos = pos->next)
449
450 /**
451 * __list_for_each        -        iterate over a list
452 * @pos:        the &struct list_head to use as a loop cursor.
453 * @head:        the head for your list.
454 *
455 * This variant differs from list_for_each() in that it's the
456 * simplest possible list iteration code, no prefetching is done.
457 * Use this for code that knows the list to be very short (empty
458 * or 1 entry) most of the time.
459 */
460 #define __list_for_each(pos, head) \
461         for (pos = (head)->next; pos != (head); pos = pos->next)
462
463 /**
464 * list_for_each_prev        -        iterate over a list backwards
465 * @pos:        the &struct list_head to use as a loop cursor.
466 * @head:        the head for your list.
467 */
468 #define list_for_each_prev(pos, head) \
469         for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
470         pos = pos->prev)
471
472 /**
473 * list_for_each_safe - iterate over a list safe against removal of list entry
474 * @pos:        the &struct list_head to use as a loop cursor.
475 * @n:                another &struct list_head to use as temporary storage
476 * @head:        the head for your list.
477 */
478 #define list_for_each_safe(pos, n, head) \
479         for (pos = (head)->next, n = pos->next; pos != (head); \
480                 pos = n, n = pos->next)
481
482 /**
483 * list_for_each_entry        -        iterate over list of given type
484 * @pos:        the type * to use as a loop cursor.
485 * @head:        the head for your list.
486 * @member:        the name of the list_struct within the struct.
487 */
488 #define list_for_each_entry(pos, head, member)                                \
489         for (pos = list_entry((head)->next, typeof(*pos), member);        \
490          prefetch(pos->member.next), &pos->member != (head);         \
491          pos = list_entry(pos->member.next, typeof(*pos), member))
492
493 /**
494 * list_for_each_entry_reverse - iterate backwards over list of given type.
495 * @pos:        the type * to use as a loop cursor.
496 * @head:        the head for your list.
497 * @member:        the name of the list_struct within the struct.
498 */
499 #define list_for_each_entry_reverse(pos, head, member)                        \
500         for (pos = list_entry((head)->prev, typeof(*pos), member);        \
501          prefetch(pos->member.prev), &pos->member != (head);         \
502          pos = list_entry(pos->member.prev, typeof(*pos), member))
503
504 /**
505 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
506 * @pos:        the type * to use as a start point
507 * @head:        the head of the list
508 * @member:        the name of the list_struct within the struct.
509 *
510 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
511 */
512 #define list_prepare_entry(pos, head, member) \
513         ((pos) ? : list_entry(head, typeof(*pos), member))
514
515 /**
516 * list_for_each_entry_continue - continue iteration over list of given type
517 * @pos:        the type * to use as a loop cursor.
518 * @head:        the head for your list.
519 * @member:        the name of the list_struct within the struct.
520 *
521 * Continue to iterate over list of given type, continuing after
522 * the current position.
523 */
524 #define list_for_each_entry_continue(pos, head, member)                 \
525         for (pos = list_entry(pos->member.next, typeof(*pos), member);        \
526          prefetch(pos->member.next), &pos->member != (head);        \
527          pos = list_entry(pos->member.next, typeof(*pos), member))
528
529 /**
530 * list_for_each_entry_from - iterate over list of given type from the current point
531 * @pos:        the type * to use as a loop cursor.
532 * @head:        the head for your list.
533 * @member:        the name of the list_struct within the struct.
534 *
535 * Iterate over list of given type, continuing from current position.
536 */
537 #define list_for_each_entry_from(pos, head, member)                         \
538         for (; prefetch(pos->member.next), &pos->member != (head);        \
539          pos = list_entry(pos->member.next, typeof(*pos), member))
540
541 /**
542 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
543 * @pos:        the type * to use as a loop cursor.
544 * @n:                another type * to use as temporary storage
545 * @head:        the head for your list.
546 * @member:        the name of the list_struct within the struct.
547 */
548 #define list_for_each_entry_safe(pos, n, head, member)                        \
549         for (pos = list_entry((head)->next, typeof(*pos), member),        \
550                 n = list_entry(pos->member.next, typeof(*pos), member);        \
551          &pos->member != (head);                                         \
552          pos = n, n = list_entry(n->member.next, typeof(*n), member))
553
554 /**
555 * list_for_each_entry_safe_continue
556 * @pos:        the type * to use as a loop cursor.
557 * @n:                another type * to use as temporary storage
558 * @head:        the head for your list.
559 * @member:        the name of the list_struct within the struct.
560 *
561 * Iterate over list of given type, continuing after current point,
562 * safe against removal of list entry.
563 */
564 #define list_for_each_entry_safe_continue(pos, n, head, member)                 \
565         for (pos = list_entry(pos->member.next, typeof(*pos), member),                 \
566                 n = list_entry(pos->member.next, typeof(*pos), member);                \
567          &pos->member != (head);                                                \
568          pos = n, n = list_entry(n->member.next, typeof(*n), member))
569
570 /**
571 * list_for_each_entry_safe_from
572 * @pos:        the type * to use as a loop cursor.
573 * @n:                another type * to use as temporary storage
574 * @head:        the head for your list.
575 * @member:        the name of the list_struct within the struct.
576 *
577 * Iterate over list of given type from current point, safe against
578 * removal of list entry.
579 */
580 #define list_for_each_entry_safe_from(pos, n, head, member)                         \
581         for (n = list_entry(pos->member.next, typeof(*pos), member);                \
582          &pos->member != (head);                                                \
583          pos = n, n = list_entry(n->member.next, typeof(*n), member))
584
585 /**
586 * list_for_each_entry_safe_reverse
587 * @pos:        the type * to use as a loop cursor.
588 * @n:                another type * to use as temporary storage
589 * @head:        the head for your list.
590 * @member:        the name of the list_struct within the struct.
591 *
592 * Iterate backwards over list of given type, safe against removal
593 * of list entry.
594 */
595 #define list_for_each_entry_safe_reverse(pos, n, head, member)                \
596         for (pos = list_entry((head)->prev, typeof(*pos), member),        \
597                 n = list_entry(pos->member.prev, typeof(*pos), member);        \
598          &pos->member != (head);                                         \
599          pos = n, n = list_entry(n->member.prev, typeof(*n), member))
600
601 /**
602 * list_for_each_rcu        -        iterate over an rcu-protected list
603 * @pos:        the &struct list_head to use as a loop cursor.
604 * @head:        the head for your list.
605 *
606 * This list-traversal primitive may safely run concurrently with
607 * the _rcu list-mutation primitives such as list_add_rcu()
608 * as long as the traversal is guarded by rcu_read_lock().
609 */
610 #define list_for_each_rcu(pos, head) \
611         for (pos = (head)->next; \
612                 prefetch(rcu_dereference(pos)->next), pos != (head); \
613         pos = pos->next)
614
615 #define __list_for_each_rcu(pos, head) \
616         for (pos = (head)->next; \
617                 rcu_dereference(pos) != (head); \
618         pos = pos->next)
619
620 /**
621 * list_for_each_safe_rcu
622 * @pos:        the &struct list_head to use as a loop cursor.
623 * @n:                another &struct list_head to use as temporary storage
624 * @head:        the head for your list.
625 *
626 * Iterate over an rcu-protected list, safe against removal of list entry.
627 *
628 * This list-traversal primitive may safely run concurrently with
629 * the _rcu list-mutation primitives such as list_add_rcu()
630 * as long as the traversal is guarded by rcu_read_lock().
631 */
632 #define list_for_each_safe_rcu(pos, n, head) \
633         for (pos = (head)->next; \
634                 n = rcu_dereference(pos)->next, pos != (head); \
635                 pos = n)
636
637 /**
638 * list_for_each_entry_rcu        -        iterate over rcu list of given type
639 * @pos:        the type * to use as a loop cursor.
640 * @head:        the head for your list.
641 * @member:        the name of the list_struct within the struct.
642 *
643 * This list-traversal primitive may safely run concurrently with
644 * the _rcu list-mutation primitives such as list_add_rcu()
645 * as long as the traversal is guarded by rcu_read_lock().
646 */
647 #define list_for_each_entry_rcu(pos, head, member) \
648         for (pos = list_entry((head)->next, typeof(*pos), member); \
649                 prefetch(rcu_dereference(pos)->member.next), \
650                         &pos->member != (head); \
651                 pos = list_entry(pos->member.next, typeof(*pos), member))
652
653
654 /**
655 * list_for_each_continue_rcu
656 * @pos:        the &struct list_head to use as a loop cursor.
657 * @head:        the head for your list.
658 *
659 * Iterate over an rcu-protected list, continuing after current point.
660 *
661 * This list-traversal primitive may safely run concurrently with
662 * the _rcu list-mutation primitives such as list_add_rcu()
663 * as long as the traversal is guarded by rcu_read_lock().
664 */
665 #define list_for_each_continue_rcu(pos, head) \
666         for ((pos) = (pos)->next; \
667                 prefetch(rcu_dereference((pos))->next), (pos) != (head); \
668         (pos) = (pos)->next)
669
670 /*
671 * Double linked lists with a single pointer list head.
672 * Mostly useful for hash tables where the two pointer list head is
673 * too wasteful.
674 * You lose the ability to access the tail in O(1).
675 */
676
677 struct hlist_head {
678         struct hlist_node *first;
679 };
680
681 struct hlist_node {
682         struct hlist_node *next, **pprev;
683 };
684
685 #define HLIST_HEAD_INIT { .first = NULL }
686 #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL }
687 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
688 static inline void INIT_HLIST_NODE(struct hlist_node *h)
689 {
690         h->next = NULL;
691         h->pprev = NULL;
692 }
693
694 static inline int hlist_unhashed(const struct hlist_node *h)
695 {
696         return !h->pprev;
697 }
698
699 static inline int hlist_empty(const struct hlist_head *h)
700 {
701         return !h->first;
702 }
703
704 static inline void __hlist_del(struct hlist_node *n)
705 {
706         struct hlist_node *next = n->next;
707         struct hlist_node **pprev = n->pprev;
708         *pprev = next;
709         if (next)
710                 next->pprev = pprev;
711 }
712
713 static inline void hlist_del(struct hlist_node *n)
714 {
715         __hlist_del(n);
716         n->next = LIST_POISON1;
717         n->pprev = LIST_POISON2;
718 }
719
720 /**
721 * hlist_del_rcu - deletes entry from hash list without re-initialization
722 * @n: the element to delete from the hash list.
723 *
724 * Note: list_unhashed() on entry does not return true after this,
725 * the entry is in an undefined state. It is useful for RCU based
726 * lockfree traversal.
727 *
728 * In particular, it means that we can not poison the forward
729 * pointers that may still be used for walking the hash list.
730 *
731 * The caller must take whatever precautions are necessary
732 * (such as holding appropriate locks) to avoid racing
733 * with another list-mutation primitive, such as hlist_add_head_rcu()
734 * or hlist_del_rcu(), running on this same list.
735 * However, it is perfectly legal to run concurrently with
736 * the _rcu list-traversal primitives, such as
737 * hlist_for_each_entry().
738 */
739 static inline void hlist_del_rcu(struct hlist_node *n)
740 {
741         __hlist_del(n);
742         n->pprev = LIST_POISON2;
743 }
744
745 static inline void hlist_del_init(struct hlist_node *n)
746 {
747         if (!hlist_unhashed(n)) {
748                 __hlist_del(n);
749                 INIT_HLIST_NODE(n);
750         }
751 }
752
753 /**
754 * hlist_replace_rcu - replace old entry by new one
755 * @old : the element to be replaced
756 * @new : the new element to insert
757 *
758 * The @old entry will be replaced with the @new entry atomically.
759 */
760 static inline void hlist_replace_rcu(struct hlist_node *old,
761                                         struct hlist_node *new)
762 {
763         struct hlist_node *next = old->next;
764
765         new->next = next;
766         new->pprev = old->pprev;
767         smp_wmb();
768         if (next)
769                 new->next->pprev = &new->next;
770         *new->pprev = new;
771         old->pprev = LIST_POISON2;
772 }
773
774 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
775 {
776         struct hlist_node *first = h->first;
777         n->next = first;
778         if (first)
779                 first->pprev = &n->next;
780         h->first = n;
781         n->pprev = &h->first;
782 }
783
784
785 /**
786 * hlist_add_head_rcu
787 * @n: the element to add to the hash list.
788 * @h: the list to add to.
789 *
790 * Description:
791 * Adds the specified element to the specified hlist,
792 * while permitting racing traversals.
793 *
794 * The caller must take whatever precautions are necessary
795 * (such as holding appropriate locks) to avoid racing
796 * with another list-mutation primitive, such as hlist_add_head_rcu()
797 * or hlist_del_rcu(), running on this same list.
798 * However, it is perfectly legal to run concurrently with
799 * the _rcu list-traversal primitives, such as
800 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
801 * problems on Alpha CPUs. Regardless of the type of CPU, the
802 * list-traversal primitive must be guarded by rcu_read_lock().
803 */
804 static inline void hlist_add_head_rcu(struct hlist_node *n,
805                                         struct hlist_head *h)
806 {
807         struct hlist_node *first = h->first;
808         n->next = first;
809         n->pprev = &h->first;
810         smp_wmb();
811         if (first)
812                 first->pprev = &n->next;
813         h->first = n;
814 }
815
816 /* next must be != NULL */
817 static inline void hlist_add_before(struct hlist_node *n,
818                                         struct hlist_node *next)
819 {
820         n->pprev = next->pprev;
821         n->next = next;
822         next->pprev = &n->next;
823         *(n->pprev) = n;
824 }
825
826 static inline void hlist_add_after(struct hlist_node *n,
827                                         struct hlist_node *next)
828 {
829         next->next = n->next;
830         n->next = next;
831         next->pprev = &n->next;
832
833         if(next->next)
834                 next->next->pprev = &next->next;
835 }
836
837 /**
838 * hlist_add_before_rcu
839 * @n: the new element to add to the hash list.
840 * @next: the existing element to add the new element before.
841 *
842 * Description:
843 * Adds the specified element to the specified hlist
844 * before the specified node while permitting racing traversals.
845 *
846 * The caller must take whatever precautions are necessary
847 * (such as holding appropriate locks) to avoid racing
848 * with another list-mutation primitive, such as hlist_add_head_rcu()
849 * or hlist_del_rcu(), running on this same list.
850 * However, it is perfectly legal to run concurrently with
851 * the _rcu list-traversal primitives, such as
852 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
853 * problems on Alpha CPUs.
854 */
855 static inline void hlist_add_before_rcu(struct hlist_node *n,
856                                         struct hlist_node *next)
857 {
858         n->pprev = next->pprev;
859         n->next = next;
860         smp_wmb();
861         next->pprev = &n->next;
862         *(n->pprev) = n;
863 }
864
865 /**
866 * hlist_add_after_rcu
867 * @prev: the existing element to add the new element after.
868 * @n: the new element to add to the hash list.
869 *
870 * Description:
871 * Adds the specified element to the specified hlist
872 * after the specified node while permitting racing traversals.
873 *
874 * The caller must take whatever precautions are necessary
875 * (such as holding appropriate locks) to avoid racing
876 * with another list-mutation primitive, such as hlist_add_head_rcu()
877 * or hlist_del_rcu(), running on this same list.
878 * However, it is perfectly legal to run concurrently with
879 * the _rcu list-traversal primitives, such as
880 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
881 * problems on Alpha CPUs.
882 */
883 static inline void hlist_add_after_rcu(struct hlist_node *prev,
884                                  struct hlist_node *n)
885 {
886         n->next = prev->next;
887         n->pprev = &prev->next;
888         smp_wmb();
889         prev->next = n;
890         if (n->next)
891                 n->next->pprev = &n->next;
892 }
893
894 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
895
896 #define hlist_for_each(pos, head) \
897         for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \
898          pos = pos->next)
899
900 #define hlist_for_each_safe(pos, n, head) \
901         for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
902          pos = n)
903
904 /**
905 * hlist_for_each_entry        - iterate over list of given type
906 * @tpos:        the type * to use as a loop cursor.
907 * @pos:        the &struct hlist_node to use as a loop cursor.
908 * @head:        the head for your list.
909 * @member:        the name of the hlist_node within the struct.
910 */
911 #define hlist_for_each_entry(tpos, pos, head, member)                         \
912         for (pos = (head)->first;                                         \
913          pos && ({ prefetch(pos->next); 1;}) &&                         \
914                 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
915          pos = pos->next)
916
917 /**
918 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
919 * @tpos:        the type * to use as a loop cursor.
920 * @pos:        the &struct hlist_node to use as a loop cursor.
921 * @member:        the name of the hlist_node within the struct.
922 */
923 #define hlist_for_each_entry_continue(tpos, pos, member)                 \
924         for (pos = (pos)->next;                                                 \
925          pos && ({ prefetch(pos->next); 1;}) &&                         \
926                 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
927          pos = pos->next)
928
929 /**
930 * hlist_for_each_entry_from - iterate over a hlist continuing from current point
931 * @tpos:        the type * to use as a loop cursor.
932 * @pos:        the &struct hlist_node to use as a loop cursor.
933 * @member:        the name of the hlist_node within the struct.
934 */
935 #define hlist_for_each_entry_from(tpos, pos, member)                         \
936         for (; pos && ({ prefetch(pos->next); 1;}) &&                         \
937                 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
938          pos = pos->next)
939
940 /**
941 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
942 * @tpos:        the type * to use as a loop cursor.
943 * @pos:        the &struct hlist_node to use as a loop cursor.
944 * @n:                another &struct hlist_node to use as temporary storage
945 * @head:        the head for your list.
946 * @member:        the name of the hlist_node within the struct.
947 */
948 #define hlist_for_each_entry_safe(tpos, pos, n, head, member)                  \
949         for (pos = (head)->first;                                         \
950          pos && ({ n = pos->next; 1; }) &&                                  \
951                 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
952          pos = n)
953
954 /**
955 * hlist_for_each_entry_rcu - iterate over rcu list of given type
956 * @tpos:        the type * to use as a loop cursor.
957 * @pos:        the &struct hlist_node to use as a loop cursor.
958 * @head:        the head for your list.
959 * @member:        the name of the hlist_node within the struct.
960 *
961 * This list-traversal primitive may safely run concurrently with
962 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
963 * as long as the traversal is guarded by rcu_read_lock().
964 */
965 #define hlist_for_each_entry_rcu(tpos, pos, head, member)                 \
966         for (pos = (head)->first;                                         \
967          rcu_dereference(pos) && ({ prefetch(pos->next); 1;}) &&         \
968                 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
969          pos = pos->next)
970
971 #else
972 #warning "don't include kernel headers in userspace"
973 #endif /* __KERNEL__ */
974 #endif

 
 

 
 

`。

linux内核链表的实现的更多相关文章

  1. C语言 Linux内核链表(企业级链表)

    //Linux内核链表(企业级链表) #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<stdlib.h> ...

  2. 深入分析 Linux 内核链表--转

    引用地址:http://www.ibm.com/developerworks/cn/linux/kernel/l-chain/index.html 一. 链表数据结构简介 链表是一种常用的组织有序数据 ...

  3. Linux 内核链表

    一 . Linux内核链表 1 . 内核链表函数 1.INIT_LIST_HEAD:创建链表 2.list_add:在链表头插入节点 3.list_add_tail:在链表尾插入节点 4.list_d ...

  4. linux内核链表分析

    一.常用的链表和内核链表的区别 1.1  常规链表结构        通常链表数据结构至少应包含两个域:数据域和指针域,数据域用于存储数据,指针域用于建立与下一个节点的联系.按照指针域的组织以及各个节 ...

  5. 深入分析 Linux 内核链表

    转载:http://www.ibm.com/developerworks/cn/linux/kernel/l-chain/   一. 链表数据结构简介 链表是一种常用的组织有序数据的数据结构,它通过指 ...

  6. Linux 内核 链表 的简单模拟(2)

    接上一篇Linux 内核 链表 的简单模拟(1) 第五章:Linux内核链表的遍历 /** * list_for_each - iterate over a list * @pos: the & ...

  7. Linux 内核 链表 的简单模拟(1)

    第零章:扯扯淡 出一个有意思的题目:用一个宏定义FIND求一个结构体struct里某个变量相对struc的编移量,如 struct student { int a; //FIND(struct stu ...

  8. linux内核链表的移植与使用

    一.  Linux内核链表为双向循环链表,和数据结构中所学链表类似,具体不再细讲.由于在内核中所实现的函数十分经典,所以移植出来方便后期应用程序中的使用. /********************* ...

  9. [国嵌攻略][108][Linux内核链表]

    链表简介 链表是一种常见的数据结构,它通过指针将一系列数据节点连接成一条数据链.相对于数组,链表具有更好的动态性,建立链表时无需预先知道数据总量,可以随机分配空间,可以高效地在链表中的任意位置实时插入 ...

  10. linux内核链表的使用

    linux内核链表:链表通常包括两个域:数据域和指针域.struct list_head{struct list_head *next,*prev;};include/linux/list.h中实现了 ...

随机推荐

  1. js 原生url编码

    参考:http://www.runoob.com/jsref/jsref-decodeuricomponent.html

  2. rem与部分手机 字体偏大问题

    原因是部分手机自己设置了巨无霸字体.

  3. D. Restore Permutation 树状数组+二分

    D. Restore Permutation 题意:给定n个数a[i],a[ i ]表示在[b[1],b[i-1]]这些数中比 b[i]小的数的和,要你构造这样的b[i]序列 题解:利用树状数组 求比 ...

  4. 虚拟机下安装 VMwareTools 实现宿主机和虚拟机的文件共享

    $ mount /dev/sr0 /media/ #点击 虚拟机 安装 VMwareTools 挂载 $ cd /media/ $ cp VMwareTools-10.1.6-5214329.tar. ...

  5. 02-01 Android学习进度报告一

    前两天,刚刚安装好有关Android开发有关的软件并配好了环境,有一些体会想要发表. 首先我了解到有一款专门用于Android开发的软件,叫做Android Studio ,是一个IDE集成软件 于是 ...

  6. 三星 S10 运行 Ubuntu 系统

    导读 DeX 是一种模仿桌面操作系统的用户 UI 界面,把支持 DeX 的三星手机用数据线连上外置显示器,用户就可以获得一种类似桌面系统的使用体验. 三星 S8.Note 8.S9.Note 9.S1 ...

  7. Ubuntu的妥协将支持精选的32位应用

    据外媒Tom's hardware,Ubuntu开发人员Canonical在早先的时候宣布Ubuntu 19.10将不再更新32位软件包和应用程序,引来了诸多应用开发者的不满.现在,Ubuntu方面宣 ...

  8. zookeeper logs is missing zookeeper 日志丢失

    ERROR [main:QuorumPeerMain@85] - Invalid config, exiting abnormally Invalid config, exiting abnormal ...

  9. Kubernetes 二进制部署(二)集群部署(多 Master 节点通过 Nginx 负载均衡)

    0. 前言 紧接上一篇,本篇文章我们尝试学习多节点部署 kubernetes 集群 并通过 haproxy+keepalived 实现 Master 节点的负载均衡 1. 实验环境 实验环境主要为 5 ...

  10. Day3-H-Alice and Bob HDU4268

    Alice and Bob's game never ends. Today, they introduce a new game. In this game, both of them have N ...