当我们在做数据库分库分表或者是分布式缓存时,不可避免的都会遇到一个问题:

如何将数据均匀的分散到各个节点中,并且尽量的在加减节点时能使受影响的数据最少。

Hash 取模

随机放置就不说了,会带来很多问题。通常最容易想到的方案就是 hash 取模了。

可以将传入的 Key 按照 index = hash(key) % N 这样来计算出需要存放的节点。其中 hash 函数是一个将字符串转换为正整数的哈希映射方法,N 就是节点的数量。

这样可以满足数据的均匀分配,但是这个算法的容错性和扩展性都较差。

比如增加或删除了一个节点时,所有的 Key 都需要重新计算,显然这样成本较高,为此需要一个算法满足分布均匀同时也要有良好的容错性和拓展性。

一致 Hash 算法

一致 Hash 算法是将所有的哈希值构成了一个环,其范围在 0 ~ 2^32-1。如下图:

之后将各个节点散列到这个环上,可以用节点的 IP、hostname 这样的唯一性字段作为 Key 进行 hash(key),散列之后如下:

之后需要将数据定位到对应的节点上,使用同样的 hash 函数 将 Key 也映射到这个环上。

这样按照顺时针方向就可以把 k1 定位到 N1节点,k2 定位到 N3节点,k3 定位到 N2节点

大专栏  一致性 Hash 算法分析

容错性

这时假设 N1 宕机了:

依然根据顺时针方向,k2 和 k3 保持不变,只有 k1 被重新映射到了 N3。这样就很好的保证了容错性,当一个节点宕机时只会影响到少少部分的数据。

拓展性

当新增一个节点时:

在 N2 和 N3 之间新增了一个节点 N4 ,这时会发现受印象的数据只有 k3,其余数据也是保持不变,所以这样也很好的保证了拓展性。

虚拟节点

到目前为止该算法依然也有点问题:

当节点较少时会出现数据分布不均匀的情况:

这样会导致大部分数据都在 N1 节点,只有少量的数据在 N2 节点。

为了解决这个问题,一致哈希算法引入了虚拟节点。将每一个节点都进行多次 hash,生成多个节点放置在环上称为虚拟节点:

计算时可以在 IP 后加上编号来生成哈希值。

这样只需要在原有的基础上多一步由虚拟节点映射到实际节点的步骤即可让少量节点也能满足均匀性。

号外

最近在总结一些 Java 相关的知识点,感兴趣的朋友可以一起维护。

地址: https://github.com/crossoverJie/Java-Interview

一致性 Hash 算法分析的更多相关文章

  1. 一致性 Hash 算法的实际应用

    前言 记得一年前分享过一篇<一致性 Hash 算法分析>,当时只是分析了这个算法的实现原理.解决了什么问题等. 但没有实际实现一个这样的算法,毕竟要加深印象还得自己撸一遍,于是本次就当前的 ...

  2. 一致性hash应用到redis

    理解分布式存储的本质 有一个经典的实践经验: 数(值)据大了, 什么都是问题! 如果要求128B或更大数值计算, 哪么四则运算会是个大问题! 如果要求128T或更大日志存储, 哪么文件存储会是个大问题 ...

  3. 对一致性Hash算法,Java代码实现的深入研究

    一致性Hash算法 关于一致性Hash算法,在我之前的博文中已经有多次提到了,MemCache超详细解读一文中"一致性Hash算法"部分,对于为什么要使用一致性Hash算法.一致性 ...

  4. 转载自lanceyan: 一致性hash和solr千万级数据分布式搜索引擎中的应用

    一致性hash和solr千万级数据分布式搜索引擎中的应用 互联网创业中大部分人都是草根创业,这个时候没有强劲的服务器,也没有钱去买很昂贵的海量数据库.在这样严峻的条件下,一批又一批的创业者从创业中获得 ...

  5. 一致性hash算法详解

    转载请说明出处:http://blog.csdn.net/cywosp/article/details/23397179     一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT) ...

  6. 探索c#之一致性Hash详解

    阅读目录: 使用场景 算法原理 虚拟节点 代码示例 使用场景 以Redis为例,当系统需要缓存的内容超过单机内存大小时,例如要缓存100G数据,单机内存仅有16G时.这时候就需要考虑进行缓存数据分片, ...

  7. 一致性hash算法简介

    一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用的简单哈希 ...

  8. 分布式缓存技术memcached学习(四)—— 一致性hash算法原理

    分布式一致性hash算法简介 当你看到“分布式一致性hash算法”这个词时,第一时间可能会问,什么是分布式,什么是一致性,hash又是什么.在分析分布式一致性hash算法原理之前,我们先来了解一下这几 ...

  9. 关于Memcached一致性hash的探究

    参考文章 http://blog.chinaunix.net/uid-20498361-id-4303232.html http://blog.csdn.net/kongqz/article/deta ...

随机推荐

  1. 图之强连通--Tarjan算法

    强连通分量 简介 在阅读下列内容之前,请务必了解图论基础部分. 强连通的定义是:有向图 G 强连通是指,G 中任意两个结点连通. 强连通分量(Strongly Connected Components ...

  2. apache 伪静态配置 .htaccess

    htaccess语法教程apache服务器伪静态规则教程 虽然网上有很多教程,不过发现大部分都是抄袭一个人的,一点都不全,所以我想写一个简单的易于理解的教程,我学习.htaccess是从目录保护开始的 ...

  3. vim中的正则表达式替换

    这个总结的不错 http://tanqisen.github.io/blog/2013/01/13/vim-search-replace-regex/

  4. LeetCode No.151,152,153

    No.151 ReverseWords 翻转字符串里的单词 题目 给定一个字符串,逐个翻转字符串中的每个单词. 示例 输入: "the sky is blue" 输出: " ...

  5. 详解python可迭代对象、迭代器和生成器

    可迭代对象 什么是可迭代对象?顾名思义就是可以迭代的一个对象,再通俗点就是可以被for循环遍历的对象,如常用的list.str等数据类型.我们可以使用isinstance来判断这个数据是否是可迭代对象 ...

  6. MySQL修改最大连接数的两个方法,偏爱第一种

    总结MySQL修改最大连接数的两个方式   最大连接数是可以通过mysql进行修改的,mysql数据库修改最大连接数常用有两种方法,今天我们分析一下这两种方法之间的特点和区别,以便我们能更好的去维护m ...

  7. static及final知识点整理

    final在Java中是一个保留的关键字,可以声明成员变量.方法.类以及本地变量.一旦你将引用声明作final,你将不能改变这个引用了,编译器会检查代码,如果你试图将变量再次初始化的话,编译器会报编译 ...

  8. iOS 后台任务

    首先开启后台任务 使用设置后台任务触发的时机 application.setMinimumBackgroundFetchInterval(UIApplication.backgroundFetchIn ...

  9. QuickSort(快速排序)原理及C++代码实现

    快速排序可以说是最重要的排序,其中延伸的思想和技巧非常值得我们学习. 快速排序也使用了分治的思想,原理如下: 分解:数组A[p..r]被划分为两个(可能为空)子数组A[p..q-1]和A[q+1..r ...

  10. [LC] 53. Maximum Subarray

    Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...