传送门:http://acm.hdu.edu.cn/showproblem.php?pid=2586

题意:给你N个点,M次询问。1~N-1行输入点与点之间的权值,之后M行输入两个点(a,b)之间的最近距离;

思路:设d[maxn]是当前点到根结点的距离,则答案就是 d[a]-d[lca(a,b)]+d[b]-d[lca(a,b)];

接下来介绍LCA(Least Common Ancestors)

即最近公共祖先,是指在有根树中,找出某两个结点u和v最近的公共祖先。

常见解法一般有三种

这里讲解一种在线算法—倍增

所谓倍增,就是按2的倍数来增大,也就是跳 1,2,4,8,16,321,2,4,8,16,32 …… 不过在这我们不是按从小到大跳,而是从大向小跳,即按……32,16,8,4,2,132,16,8,4,2,1来跳,如果大的跳不过去,再把它调小。


首先我们定义fa[u][j]表示结点u的第2^j祖先 

那么要怎么求出全部的fa数组呢

不难发现fa[u][0]就是u的父亲结点 

这些父亲结点我们可以直接初始化

对于其他结点则有 

f[u][j]=f[ fa[u][j-1] ] [j-1] 

什么意思呢 

u的第2^(j-1)祖先的第2^(j-1)祖先(2^(j-1)+2^(j-1)) 就是u的第2^j祖先


预处理各节点深度+初始化fa数组

void dfs(int x, int fa)
{
h[x] = h[fa] + 1;
f[x][0] = fa;
for(int i = 1; (1 << i) <= h[x]; i++)
f[x][i] = f[f[x][i - 1]][i - 1];
for(int i = head[x]; i; i = edges[i].next)
{
if(edges[i].to != fa)
{
d[edges[i].to] = d[x] + edges[i].w;
dfs(edges[i].to, x);
}
}
}

预处理之后怎么求解LCA(u,v)呢 

我么先假定h[u]>h[v] 

则两点深度差 d=h[u]-h[v]

现在我们要做的是把u升到与v同样的深度

while(h[x] > h[y])
x = f[x][lg[h[x] - h[y]] - 1];//因为预处理的log函数是log2(i)+1所以要-1

对于任意一个d 

我们都能将其分解为

所以直接可以得到向上走的指数

而log函数需要预处理

for(int i = 1; i <= maxn; i++)//log2(i)+1
{
if((1 << lg[i - 1]) == i)
lg[i] = lg[i - 1] + 1;
else
lg[i] = lg[i - 1];
}

到相同高度后就可以开始查询LCA了

for(int i = lg[h[x]] - 1; i >= 0; i--)
{
if(f[x][i] != f[y][i])
x = f[x][i], y = f[y][i];
}

大体思路就是 

从u和v最远的祖先开始 

如果u的第2^i祖先等于 v的第2^i祖先,就不移动 

否则u和v同时上移2^i个深度 

最后u的父亲一定是u和v的LCA

#include<iostream>
#include<string.h>
#include<cstdio>
using namespace std;
const int maxn = 4e4 + 10;
int n, m;
int tot;
struct node
{
int to;
int next;
int w;
};
node edges[maxn << 1];
int head[maxn];
int lg[maxn];
int h[maxn];
int d[maxn];//当前结点到根结点的深度
int f[maxn][30];//f[i][j] 表示 i 节点的 2^j 级祖先
void add_edges(int u, int v, int w)
{
edges[++tot].to = v;
edges[tot].next = head[u];
edges[tot].w = w;
head[u] = tot;
}
void dfs(int x, int fa)
{
h[x] = h[fa] + 1;
f[x][0] = fa;
for(int i = 1; (1 << i) <= h[x]; i++)
f[x][i] = f[f[x][i - 1]][i - 1];
for(int i = head[x]; i; i = edges[i].next)
{
if(edges[i].to != fa)
{
d[edges[i].to] = d[x] + edges[i].w;
dfs(edges[i].to, x);
}
}
}
int lca(int x, int y)
{
if(h[x] < h[y])
swap(x, y);
while(h[x] > h[y])
x = f[x][lg[h[x] - h[y]] - 1];
if(x == y)
return x;
for(int i = lg[h[x]] - 1; i >= 0; i--)
{
if(f[x][i] != f[y][i])
x = f[x][i], y = f[y][i];
}
return f[x][0];
}
int main()
{
int T;
scanf("%d", &T);
for(int i = 1; i <= maxn; i++)//log2(i)+1
{
if((1 << lg[i - 1]) == i)
lg[i] = lg[i - 1] + 1;
else
lg[i] = lg[i - 1];
}
while(T--)
{
tot = 0;
memset(head, 0, sizeof(head));
scanf("%d%d", &n, &m);
int i, j, k;
for(int t = 1; t < n; t++)
{
scanf("%d%d%d", &i, &j, &k);
add_edges(i, j, k);
add_edges(j, i, k);
}
dfs(1, -1);
for(int t = 1; t <= m; t++)
{
scanf("%d%d", &i, &j);
cout << d[i] + d[j] - 2 * d[lca(i, j)] << endl;
}
}
}

HDU 2586 How far away ?【LCA模板题】的更多相关文章

  1. hdu 2586 How far away?(LCA模板题+离线tarjan算法)

    How far away ? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  2. HDU - 2586 How far away ?(LCA模板题)

    HDU - 2586 How far away ? Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & ...

  3. HDU 2586——How far away ?——————【LCA模板题】

    How far away ? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  4. HDU 2602 - Bone Collector - [01背包模板题]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2602 Many years ago , in Teddy’s hometown there was a ...

  5. HDU 2544 最短路 【Dijkstra模板题】

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=2544 思路:最短路的模板题 Dijkstra 算法是一种类似于贪心的算法,步骤如下: 1.当到一个点时, ...

  6. 【网络流#2】hdu 1533 - 最小费用最大流模板题

    最小费用最大流,即MCMF(Minimum Cost Maximum Flow)问题 嗯~第一次写费用流题... 这道就是费用流的模板题,找不到更裸的题了 建图:每个m(Man)作为源点,每个H(Ho ...

  7. hdu 1711 Number Sequence(KMP模板题)

    我的第一道KMP. 把两个数列分别当成KMP算法中的模式串和目标串,这道题就变成了一个KMP算法模板题. #include<stdio.h> #include<string.h> ...

  8. HDU 1874 畅通工程续(模板题——Floyd算法)

    题目: 某省自从实行了很多年的畅通工程计划后,终于修建了很多路.不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多.这让行人很困扰 ...

  9. HDU 1301-Jungle Roads【Kruscal】模板题

    题目链接>>> 题目大意: 给出n个城市,接下来n行每一行对应该城市所能连接的城市的个数,城市的编号以及花费,现在求能连通整个城市所需要的最小花费. 解题分析: 最小生成树模板题,下 ...

  10. 敌兵布阵 HDU - 1166 (树状数组模板题,线段树模板题)

    思路:就是树状数组的模板题,利用的就是单点更新和区间求和是树状数组的强项时间复杂度为m*log(n) 没想到自己以前把这道题当线段树的单点更新刷了. 树状数组: #include<iostrea ...

随机推荐

  1. ffmpeg “inttypes.h”: No such file or directory

    编译过程:错误一:无法打开包括文件:“inttypes.h”: No such file or directory解决方法:删除之,并在其之前添加如下代码: #if defined(WIN32) &a ...

  2. yum相关变量浅析

    问题背景 同事发现一台centos7机器的yum repo不能使用,现象为相关的repo的meta文件下载失败,提示相关meta文件的下载路径有问题. 问题分析 通过终端输出的报错,发现是/etc/y ...

  3. C++面试常见问题——05字符串的逆序

    字符串的逆序 #include<iostream> #include<string.h> using namespace std; void ReverseStr(char s ...

  4. cf 785#

    23333再次水惨了..(心酸啊) A题呵呵呵呵呵 #include<cstdio> #include<iostream> using namespace std; int m ...

  5. gem5-gpu全系统模式

    # 注意:安装好gem5-gpu后再配置全系统环境 # 下载全系统模拟需要的工具,详见http://gem5.org/Running_gem5#Full_System_.28FS.29_Mode,将L ...

  6. ZOJ 1409 communication system 双变量型的DP

    这个题目一开始不知道如何下手,感觉很像背包,里面有两个变量,一个带宽B,一个价格P,有n个设备,每个设备有k个可选的器材(只需选一个),每个器材都有自己的B和P, n个设备选n个器材,最终,FB=所有 ...

  7. 吴裕雄--天生自然C++语言学习笔记:C++ 重载运算符和重载函数

    C++ 允许在同一作用域中的某个函数和运算符指定多个定义,分别称为函数重载和运算符重载. 重载声明是指一个与之前已经在该作用域内声明过的函数或方法具有相同名称的声明,但是它们的参数列表和定义(实现)不 ...

  8. 第一篇web框架

    第一篇web框架 http协议 web应用和web框架 主 文 http协议 HTTP简介 HTTP协议是Hyper Text Transfer Protocol(超文本传输协议)的缩写,是用于从万维 ...

  9. javascript 解决provisional headers are shown的过程

    请求没有被发送,因为是载入缓存资源. 大概是说 完全相同的请求间隔数毫秒(太短),导致加载失败,查看了chrome控制台发现 Provisional headers are shown 出现在 载入缓 ...

  10. 常用ES6-ES10知识点总结

    在工作中我们会常用到的一些es6-es10的一些特性还记得多少,今天就让我们重新复习一遍 ES6语法 1.Let 1.let声明的变量具有块级作用域, { let a = 1 } console.lo ...