题解 P5122 【[USACO18DEC]Fine Dining】
思路:最短路+dp
1、先跑一遍最短路,计算出没有干草垛最少要多少时间
2、dp求出有干草垛至少需要多少时间,由于dp有后效性,所以用SPFA辅助转移,dp方程和求最短路一模一样,只是先将有干草垛的拉入队列转移,仅此而已。
代码非常简单,可以说是两遍一模一样的SPFA:
#include<bits/stdc++.h>
#define maxn 1000001
#define INF 1926081700
using namespace std;
long long cnt,cost[maxn],from[maxn],to[maxn],Next[maxn],head[maxn];
long long dis[maxn],dp[maxn],point[maxn],vis[maxn];
long long n,m,k;
queue<long long>q;
void add(long long x,long long y,long long z){
cnt++;cost[cnt]=z;
from[cnt]=x;to[cnt]=y;
Next[cnt]=head[x];head[x]=cnt;
}
void SPFA(long long S){ //SPFA板子
for(int i=1;i<=n;i++)dis[i]=INF,vis[i]=0;
q.push(S);vis[S]=1;dis[S]=0;
while(!q.empty()){
long long u=q.front();q.pop();vis[u]=0;
for(int i=head[u];i!=-1;i=Next[i]){
long long v=to[i];
if(dis[v]>dis[u]+cost[i]){
dis[v]=dis[u]+cost[i];
if(vis[v]==0){
vis[v]=1;
q.push(v);
}
}
}
}
}
void BFS(int S){ //dp
for(int i=1;i<=n;i++)dp[i]=INF,vis[i]=0;
//**************************dp唯一与SPFA不同的地方**************************
for(int i=1;i<=n;i++)
if(point[i]>0){
dp[i]=dis[i]-point[i];
q.push(i);vis[i]=1;
}
//**************************dp唯一与SPFA不同的地方**************************
while(!q.empty()){
long long u=q.front();q.pop();vis[u]=0;
for(int i=head[u];i!=-1;i=Next[i]){
long long v=to[i];
if(dp[v]>dp[u]+cost[i]){
dp[v]=dp[u]+cost[i];
if(vis[v]==0){
vis[v]=1;
q.push(v);
}
}
}
}
}
int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
memset(head,-1,sizeof(head));
for(int i=1;i<=n;i++)point[i]=0;
scanf("%lld%lld%lld",&n,&m,&k);
for(int i=1;i<=m;i++){
long long x,y,z;
scanf("%lld%lld%lld",&x,&y,&z);
add(x,y,z);add(y,x,z); //建边
}
SPFA(n);
for(int i=1;i<=k;i++){
long long x,y;
scanf("%lld%lld",&x,&y);
point[x]=max(point[x],y); //加入干草垛
}
BFS(n);
for(int i=1;i<=n-1;i++){
if(dp[i]<=dis[i]) //判断,输出
printf("1\n");
else
printf("0\n");
}
return 0;
}
题解 P5122 【[USACO18DEC]Fine Dining】的更多相关文章
- Luogu P5122 [USACO18DEC]Fine Dining 最短路
先跑一遍n为起点最短路,再新开一个点,向有干草垛的点连一根边权为d[u]-w的有向边(很重要..我当时连的无向边,然后我死了.),相当于用价值抵消一部分边权, 然后以这个新的点为起点跑最短路就好了.. ...
- [USACO18DEC]Fine Dining
题面 \(Solution:\) 一开始想的是先跑一遍最短路,然后拆点之后再跑一遍,比较两次dis,然后发现拆点后会有负环(可能是我没想对拆点的方法),于是就放弃了拆点法. 我们考虑强制让每头牛选择走 ...
- [题解](最短路)luogu_P5122 Fine Dining
首先理解这里的美味值相当于给你更多时间让你经过这个草垛的, 也就是在经过草垛时可以给你的时间减少w[i],这样能否比最短路不慢 然而我们并不容易知道怎么走才是最好的,所以要想办法避免找这个方案 我们新 ...
- USACO比赛题泛刷
随时可能弃坑. 因为不知道最近要刷啥所以就决定刷下usaco. 优先级排在学习新算法和打比赛之后. 仅有一句话题解.难一点的可能有代码. 优先级是Gold>Silver.Platinum刷不动. ...
- [USACO 2018 December Contest]作业总结
t1 Convention 题目大意 每一头牛都有一个来的时间,一共有\(n\)辆车,求出等待时间最长的那头牛等待的最小时间. 解法 第一眼看到这道题还以为是\(2018noip\)普及组的t3魔鬼题 ...
- FOOD
Serving order of food courses(上菜顺序)1. Appetizer(starter)2. Main Course3. Dessert Style of cooking1. ...
- 【托业】【新托业TOEIC新题型真题】学习笔记12-题库八-P7
155.political figure 政治人物 prominent 160.association n.协会,社团; 联合,联系; 联想; rarely adv.很少地; 罕有地; 极精彩地; 珍 ...
- The 10 Best Neighborhoods in Seattle
https://www.seattlemet.com/articles/2015/4/24/the-10-best-neighborhoods-in-seattle-may-2015 By Darre ...
- 洛谷P2891 Dining P1402 酒店之王【类二分图匹配】题解+代码
洛谷P2891 Dining P1402 酒店之王[类二分图匹配]题解+代码 酒店之王 题目描述 XX酒店的老板想成为酒店之王,本着这种希望,第一步要将酒店变得人性化.由于很多来住店的旅客有自己喜好的 ...
随机推荐
- java获取当前机器的公网ip
package com.Interface.util; import javax.servlet.http.HttpServletRequest; /** * 测试类 * * @author 华文 * ...
- Java学习资源 - 测试
JUnit注解解释 1. @Test : 测试方法,测试程序会运行的方法,后边可以跟参数代表不同的测试,如(expected=XXException.class) 异常测试,(timeout=xxx) ...
- Codeforces Round #616 (Div. 2) D
莫队的模板 struct node{ int l,r,id; }q[maxn]; int cmp(node a,node b) { ) ? a.r < b.r : a.r > b.r); ...
- web优化(一 前端)
当我们在浏览器地址栏中输入一个URL的时候,网页开始请求,我们在页面上看到的内容就是许多个HTTP请求从服务器返回的数据展示,这些展示的快慢很大程度依赖前端的优化,怎样做好前端的优化,我这里总结了几点 ...
- idea修改项目编码
- 【转】issue management in your test project
What is Issue Management? Issue Management is the process to make others aware of the problem and th ...
- 【转载】手把手教你使用Git(简单,实用)
手把手教你使用Git(简单,实用) 标签: git 2016年04月21日 20:51:45 1328人阅读 评论(0) 收藏 举报 一:Git是什么? Git是目前世界上最先进的分布式版本控制系统. ...
- HTTP协议中常用相应的状态码总结
HTTP协议与我们的生活息息相关,尤其对于我们后端开发人员,工作之余我整理了一些HTTP协议响应的一些常见的状态码,希望能帮助大家 HTTP状态码列表 消息(1字头)服务器收到请求,需要请求者继续执行 ...
- 【原】postman设置环境变量和全局变量
一:设置环境变量 1. postman通过变换环境变量来快速变换环境地址. 2. 现可以将localhost:80信息添加至环境 3. 点击确定后,在首页可看到已添加的环境变量信息及设置的变量信息: ...
- MessageBox函数
<Windows程序设计>(第五版)(美Charles Petzold著) https://docs.microsoft.com/zh-cn/windows/desktop/apiinde ...