poj2115 C Looooops——扩展欧几里得
题目:http://poj.org/problem?id=2115
就是扩展欧几里得呗;
然而忘记除公约数...
代码如下:
- #include<iostream>
- #include<cstdio>
- #include<cstring>
- using namespace std;
- typedef long long ll;
- ll A,B,C,k,a,b,x,y,g,s;
- ll gcd(ll a,ll b){return a%b?gcd(b,a%b):b;}
- void exgcd(ll a,ll b,ll &x,ll &y)
- {
- if(!b){x=; y=; return;}
- exgcd(b,a%b,x,y);//最近总是忘写这个啊...无力...
- ll t=x; x=y; y=t-a/b*y;
- }
- int main()
- {
- while()
- {
- scanf("%lld%lld%lld%lld",&A,&B,&C,&k);
- if(!A&&!B&&!C&&!k)return ;
- a=C; b=1ll<<k; g=gcd(a,b); s=(B-A+b)%b;
- if(s%g){printf("FOREVER\n"); continue;}
- a/=g;//()
- b/=g;//!!
- s/=g;//!
- exgcd(a,b,x,y);//ax+by=g
- x=(x*s%b+b)%b;
- printf("%lld\n",x);
- }
- }
poj2115 C Looooops——扩展欧几里得的更多相关文章
- POJ2115 C Looooops[扩展欧几里得]
C Looooops Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 24355 Accepted: 6788 Descr ...
- C Looooops(扩展欧几里得+模线性方程)
http://poj.org/problem?id=2115 题意:给出A,B,C和k(k表示变量是在k位机下的无符号整数),判断循环次数,不能终止输出"FOREVER". 即转化 ...
- [POJ2115]C Looooops 拓展欧几里得
原题入口 这个题要找到本身的模型就行了 a+c*x=b(mod 2k) -> c*x+2k*y=b-a 求这个方程对于x,y有没有整数解. 这个只要学过拓展欧几里得(好像有的叫扩展欧几里德QA ...
- C Looooops(扩展欧几里得)
C Looooops Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 20128 Accepted: 5405 Descripti ...
- POJ 2115 C Looooops(扩展欧几里得)
辗转相除法(欧几里得算法) 时间复杂度:在O(logmax(a, b))以内 int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a ...
- POJ 2115 C Looooops扩展欧几里得
题意不难理解,看了后就能得出下列式子: (A+C*x-B)mod(2^k)=0 即(C*x)mod(2^k)=(B-A)mod(2^k) 利用模线性方程(线性同余方程)即可求解 模板直达车 #incl ...
- POJ 2115 C Looooops(扩展欧几里得应用)
题目地址:POJ 2115 水题. . 公式非常好推.最直接的公式就是a+n*c==b+m*2^k.然后能够变形为模线性方程的样子,就是 n*c+m*2^k==b-a.即求n*c==(b-a)mod( ...
- POJ - 2115C Looooops 扩展欧几里得(做的少了无法一眼看出)
题目大意&&分析: for (variable = A; variable != B; variable += C) statement;这个循环式子表示a+c*n(n为整数)==b是 ...
- POJ2115 C Looooops 模线性方程(扩展欧几里得)
题意:很明显,我就不说了 分析:令n=2^k,因为A,B,C<n,所以取模以后不会变化,所以就是求(A+x*C)%n=B 转化一下就是求 C*x=B-A(%n),最小的x 令a=C,b=B-A ...
随机推荐
- No value specified for parameter1?
我使用的是jdbcTemplate,因为忘记向list中加入参数,所以报错. 解决方案,: String sql = "select * from table where id = ?&qu ...
- language support图标消失
在控制台下输入sudo apt-get install language-selector-gnome即可
- ZJU cluster
* loginSSH using MobaXterm: >> ssh kaiming@10.106.239.105
- 洛谷 3870 [TJOI2009]开关
[题解] 线段树基础题.对于每个修改操作把相应区间的sum改为区间长度-sum即可. #include<cstdio> #include<algorithm> #include ...
- [bzoj1004][HNOI2008][Cards] (置换群+Burnside引理+动态规划)
Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...
- [模拟赛FJOI Easy Round #2][T3 skill] (最小割+最大权闭合子图(文理分科模型))
[题目描述] 天上红绯在游戏中扮演敏剑,对于高攻击低防御的职业来说,爆发力显得非常重要,为此,她准备学习n个技能,每个技能都有2个学习方向:物理攻击和魔法攻击.对于第i个技能,如果选择物理攻击方向,会 ...
- String类的判断功能
/* * Object:是类层级结构中的根类,所有的类都直接或间接的继承自该类. * 如果一个方法的形式参数是Object,那么这里我们就可以传递它的任意的子类对象. * * String类的判断功能 ...
- 复习1背包dp
背包问题是对于一个有限制的容器,一般计算可以装的物品的价值最值或数量.通常每个物品都有两个属性空间和价值,有时还有数量或别的限制条件,这个因体而异. 背包大概分成3部分,下面会细述这最经典的3种题型 ...
- 【转】建立一个更高级别的查询 API:正确使用Django ORM 的方式
这个就比较深入啦... http://www.oschina.net/translate/higher-level-query-api-django-orm 结论: 在视图和其他高级应用中使用源生的O ...
- [bzoj1232][Usaco2008Nov]安慰奶牛cheer_Kruskal
安慰奶牛 cheer bzoj-1232 Usaco-2008 Nov 题目大意:给定一个n个点,m条边的无向图,点有点权,边有边权.FJ从一个点出发,每经过一个点就加上该点点权,每经历一条边就加上该 ...