转: memcached Java客户端spymemcached的一致性Hash算法
转自:http://colobu.com/2015/04/13/consistent-hash-algorithm-in-java-memcached-client/
memcached Java客户端spymemcached的一致性Hash算法
最近看到两篇文章,一个是江南白衣的陌生但默默一统江湖的MurmurHash,另外一篇是张洋的一致性哈希算法及其在分布式系统中的应用。虽然我在项目中使用memcached的java客户端spymemcached好几年了,但是对它的一致性哈希算法的细节从来没有仔细研究过。趁此机会,特别的看了一下它的源代码。
我们知道,Memcached本身没有提供分布式的功能,一般客户端会实现一致性Hash算法,根据Key值计算出应该在哪个节点进行存取。
Ketama Hash的实现
spymemcached实现了几种Hash算法:NATIVE_HASH,CRC_HASH,FNV1_64_HASH,FNV1A_64_HASH,FNV1_32_HASH,FNV1A_32_HASH,KETAMA_HASH。
相比较前几个hash算法,KETAMA HASH算法可以将服务器的虚拟节点相对均匀的分布到环上,它是一种基于MD5散列的Hash算法。
下面这个类是我精简的spymemcached的KetamaNodeLocator类,用来测试生成的虚拟节点的分布情况,它会打印出两个虚拟节点之间的间隔。 如果间隔比较均匀,我们相信使用同样的Hash算法计算的key值应该可以均匀的落在每个节点上。
spymemcached为每个节点计算虚拟节点时使用节点地址 + "-i"格式, i最大的每个节点的虚拟节点数,默认是160个。
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
package com.colobu.consistenthashing;
import java.util.List;
import java.util.TreeMap;
public class Ketama {
public TreeMap<Long, Node> hashNodes;
public HashAlgorithm hashAlgorithm;
protected void setKetamaNodes(List<Node> nodes) {
TreeMap<Long, Node> newNodeMap = new TreeMap<Long, Node>();
int numReps = 160;
for (Node node : nodes) {
if (hashAlgorithm == HashAlgorithm.KETAMA_HASH) {
for (int i = 0; i < numReps / 4; i++) {
byte[] digest = HashAlgorithm.computeMd5(node.getName() + "-" + i);
for (int h = 0; h < 4; h++) {
Long k = ((long) (digest[3 + h * 4] & 0xFF) << 24)
| ((long) (digest[2 + h * 4] & 0xFF) << 16)
| ((long) (digest[1 + h * 4] & 0xFF) << 8)
| (digest[h * 4] & 0xFF);
newNodeMap.put(k, node);
}
}
} else {
for (int i = 0; i < numReps; i++) {
newNodeMap.put(hashAlgorithm.hash(node + "-" + i), node);
}
}
}
hashNodes = newNodeMap;
}
}
|
写一个测试类,看看虚拟节点的分布情况:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
|
package com.colobu.consistenthashing;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.Map.Entry;
public class Main {
public static void main(String[] args) {
//System.out.println("测试 ketama hash");
//testKetama();
//System.out.println("\r\n\r\n测试 native hash");
//testHash(HashAlgorithm.NATIVE_HASH);
//System.out.println("\r\n\r\n测试 CRC hash"); //max=32767
//testHash(HashAlgorithm.CRC_HASH);
//System.out.println("\r\n\r\n测试 FNV1_64_HASH");
//testHash(HashAlgorithm.FNV1_64_HASH);
//System.out.println("\r\n\r\n测试 FNV1A_64_HASH");
//testHash(HashAlgorithm.FNV1A_64_HASH);
//System.out.println("\r\n\r\n测试 MurmurHash 32");
//testHash(HashAlgorithm.MurmurHash_32);
System.out.println("\r\n\r\n测试 MurmurHash 64");
testHash(HashAlgorithm.MurmurHash_64);
}
private static void testHash(HashAlgorithm hash) {
Ketama ketama = new Ketama();
ketama.hashAlgorithm = hash;
List<Node> nodes = new ArrayList<>();
for(int i=0; i< 10; i++) {
nodes.add(new Node("name-" + i));
}
ketama.setKetamaNodes(nodes);
Iterator<Entry<Long, Node>> it = ketama.hashNodes.entrySet().iterator();
Entry<Long, Node> prior = it.next();
while(it.hasNext()) {
Entry<Long, Node> current = it.next();
System.out.println("间隔:" + (current.getKey() - prior.getKey()) + "=" + current.getKey() + "-" + prior.getKey());
prior = current;
}
}
private static void testKetama() {
Ketama ketama = new Ketama();
ketama.hashAlgorithm = HashAlgorithm.KETAMA_HASH;
List<Node> nodes = new ArrayList<>();
for(int i=0; i< 10; i++) {
nodes.add(new Node("name-" + i));
}
ketama.setKetamaNodes(nodes);
Iterator<Entry<Long, Node>> it = ketama.hashNodes.entrySet().iterator();
Entry<Long, Node> prior = it.next();
while(it.hasNext()) {
Entry<Long, Node> current = it.next();
System.out.println("间隔:" + (current.getKey() - prior.getKey()));
prior = current;
}
}
}
|
实际结果看到ketama算法还是不错的。
加入MurmurHash算法
江南白衣的那篇文章介绍了MurmurHash算法,开源中国社区也翻译了一篇 Hash 函数概览的科普文章。
如果我们将MurmurHash算法加入到spymemcached会怎么样呢。我没有测试它的性能,但是从分布上来看还是不错的。
网上有几个MurmurHash的实现,如Guava, Cassandra等。我不想额外引入第三方的包,所以直接复制了Viliam Holub的实现。
在HashAlgorithm算法中加入MurmurHash枚举类型。
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
|
package com.colobu.consistenthashing;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.util.zip.CRC32;
public enum HashAlgorithm {
/**
* Native hash (String.hashCode()).
*/
NATIVE_HASH,
/**
* CRC_HASH as used by the perl API. This will be more consistent both
* across multiple API users as well as java versions, but is mostly likely
* significantly slower.
*/
CRC_HASH,
/**
* FNV hashes are designed to be fast while maintaining a low collision rate.
* The FNV speed allows one to quickly hash lots of data while maintaining a
* reasonable collision rate.
*
* @see <a href="http://www.isthe.com/chongo/tech/comp/fnv/">fnv
* comparisons</a>
* @see <a href="http://en.wikipedia.org/wiki/Fowler_Noll_Vo_hash">fnv at
* wikipedia</a>
*/
FNV1_64_HASH,
/**
* Variation of FNV.
*/
FNV1A_64_HASH,
/**
* 32-bit FNV1.
*/
FNV1_32_HASH,
/**
* 32-bit FNV1a.
*/
FNV1A_32_HASH,
MurmurHash_32,
MurmurHash_64,
/**
* MD5-based hash algorithm used by ketama.
*/
KETAMA_HASH;
private static final long FNV_64_INIT = 0xcbf29ce484222325L;
private static final long FNV_64_PRIME = 0x100000001b3L;
private static final long FNV_32_INIT = 2166136261L;
private static final long FNV_32_PRIME = 16777619;
private static MessageDigest md5Digest = null;
static {
try {
md5Digest = MessageDigest.getInstance("MD5");
} catch (NoSuchAlgorithmException e) {
throw new RuntimeException("MD5 not supported", e);
}
}
/**
* Compute the hash for the given key.
*
* @return a positive integer hash
*/
public long hash(final String k) {
long rv = 0;
int len = k.length();
switch (this) {
case NATIVE_HASH:
rv = k.hashCode();
break;
case CRC_HASH:
// return (crc32(shift) >> 16) & 0x7fff;
CRC32 crc32 = new CRC32();
crc32.update(k.getBytes());
rv = (crc32.getValue() >> 16) & 0x7fff;
break;
case FNV1_64_HASH:
// Thanks to pierre@demartines.com for the pointer
rv = FNV_64_INIT;
for (int i = 0; i < len; i++) {
rv *= FNV_64_PRIME;
rv ^= k.charAt(i);
}
break;
case FNV1A_64_HASH:
rv = FNV_64_INIT;
for (int i = 0; i < len; i++) {
rv ^= k.charAt(i);
rv *= FNV_64_PRIME;
}
break;
case FNV1_32_HASH:
rv = FNV_32_INIT;
for (int i = 0; i < len; i++) {
rv *= FNV_32_PRIME;
rv ^= k.charAt(i);
}
break;
case FNV1A_32_HASH:
rv = FNV_32_INIT;
for (int i = 0; i < len; i++) {
rv ^= k.charAt(i);
rv *= FNV_32_PRIME;
}
break;
case MurmurHash_32:
rv = MurmurHash.hash32(k);
break;
case MurmurHash_64:
rv = MurmurHash.hash64(k);
break;
case KETAMA_HASH:
byte[] bKey = computeMd5(k);
rv = ((long) (bKey[3] & 0xFF) << 24)
| ((long) (bKey[2] & 0xFF) << 16)
| ((long) (bKey[1] & 0xFF) << 8)
| (bKey[0] & 0xFF);
break;
default:
assert false;
}
return rv & 0xffffffffL; /* Truncate to 32-bits */
}
/**
* Get the md5 of the given key.
*/
public static byte[] computeMd5(String k) {
MessageDigest md5;
try {
md5 = (MessageDigest) md5Digest.clone();
} catch (CloneNotSupportedException e) {
throw new RuntimeException("clone of MD5 not supported", e);
}
md5.update(k.getBytes());
return md5.digest();
}
}
|
实际结果看MurmurHash也是相当的均匀。
xmemcached的实现
xmemcached是另外一个memcached java客户端,它实现了类似spymemcached的hash算法。只不过增加了几种新的hash算法:MYSQL_HASH,ELF_HASH,RS_HASH,LUA_HASH,ONE_AT_A_TIME。
Twemproxy
Twemproxy是一个Memcahced的网关程序。 它实现了下面几种Hash算法。
- one_at_a_time
- md5
- crc16
- crc32 (crc32 implementation compatible with libmemcached)
- crc32a (correct crc32 implementation as per the spec)
- fnv1_64
- fnv1a_64
- fnv1_32
- fnv1a_32
- hsieh
- murmur
- jenkins
转: memcached Java客户端spymemcached的一致性Hash算法的更多相关文章
- 分布式缓存技术memcached学习(四)—— 一致性hash算法原理
分布式一致性hash算法简介 当你看到“分布式一致性hash算法”这个词时,第一时间可能会问,什么是分布式,什么是一致性,hash又是什么.在分析分布式一致性hash算法原理之前,我们先来了解一下这几 ...
- 分布式缓存技术memcached学习系列(四)—— 一致性hash算法原理
分布式一致性hash算法简介 当你看到"分布式一致性hash算法"这个词时,第一时间可能会问,什么是分布式,什么是一致性,hash又是什么.在分析分布式一致性hash算法原理之前, ...
- Java实现一致性Hash算法
Java代码实现了一致性Hash算法,并加入虚拟节点.,具体代码为: package com.baijob.commonTools; import java.util.Collection; im ...
- 分布式一致性hash算法
写在前面 在学习Redis的集群内容时,看到这么一句话:Redis并没有使用一致性hash算法,而是引入哈希槽的概念.而分布式缓存Memcached则是使用分布式一致性hash算法来实现分布式存储. ...
- 一致性Hash算法在Memcached中的应用
前言 大家应该都知道Memcached要想实现分布式只能在客户端来完成,目前比较流行的是通过一致性hash算法来实现.常规的方法是将server的hash值与server的总台数进行求余,即hash% ...
- (转) 一致性Hash算法在Memcached中的应用
前言 大家应该都知道Memcached要想实现分布式只能在客户端来完成,目前比较流行的是通过一致性hash算法来实现.常规的方法是将 server的hash值与server的总台数进行求余,即hash ...
- memcached和一致性hash算法
1 一致性hash算法的一致性 这里的一致性指的是该算法可以保持memcached和数据库中的数据的一致性. 2 什么是一致性hash算法 2.1 为什么需要一致性hash算法 现在有大量的key v ...
- 一致性hash算法在memcached中的使用
一.概述 1.我们的memcacheclient(这里我看的spymemcache的源代码).使用了一致性hash算法ketama进行数据存储节点的选择.与常规的hash算法思路不同.仅仅是对我们要存 ...
- 对一致性Hash算法,Java代码实现的深入研究
一致性Hash算法 关于一致性Hash算法,在我之前的博文中已经有多次提到了,MemCache超详细解读一文中"一致性Hash算法"部分,对于为什么要使用一致性Hash算法.一致性 ...
随机推荐
- python-leepcode-作用解析 - 5-27
30 找不同 给定两个字符串 s 和 t,它们只包含小写字母. 字符串 t 由字符串 s 随机重排,然后在随机位置添加一个字母. 请找出在 t 中被添加的字母. 示例: 输入: s = "a ...
- python中实现格式化输出 %用法
当我们在python中需要打印出特定格式的内容时可以用到这个方法,方法介绍如下: 例如我们现在要收集用户的一些个人信息,这时候我们的代码如下: name=input("name: " ...
- python爬虫入门一:爬虫基本原理
1. 什么是爬虫 爬虫就是请求网站并提取数据的自动化程序 2. 爬虫的基本流程 1)发送请求 通过HTTP库向目标站点发送请求,即发送一个Request. 请求可以包含额外的headers等信息,等待 ...
- 9-Python基础知识-day1
Python基础知识-day1 Python 2 和Python 3 的区别: Python2 源码不标准,混乱,重复代码多:#-*-encoding:utf8 -*- 解决python2显示中文的问 ...
- (转)5个Xcode开发调试技巧
1.Enable NSZombie Objects(开启僵尸对象) Enable NSZombie Objects可能是整个Xcode开发环境中最有用的调试技巧.这个技巧非常非常容易追踪到重复释放的问 ...
- I2C驱动框架(二)
参考:I2C子系统之I2C bus初始化——I2C_init() 在linux内核启动的时候最先执行的和I2C子系统相关的函数应该是driver/i2c/i2c-core.c文件中的i2c_init( ...
- visual studio 的生成、重新生成、清理功能的说明
生成 生成当前选中的项目,依赖的项目如果已经生成dll,则不生成,直接拷贝过来 重新生成 生成当前选中的项目,依赖的项目也会生成 清理 清除掉生成的dll和相关文件
- luogu1131 [ZJOI2007]时态同步
num[x]表示x到达叶子最远路径. 每个子节点对答案的贡献是num[x] - (num[t] + edge[i].val) #include <iostream> #include &l ...
- x86保护模式 任务状态段和控制门
x86保护模式 任务状态段和控制门 每个任务都有一个任务状态段TSS 用于保存任务的有关信息 在任务内权变和任务切换时 需要用到这些信息 任务内权变的转移和任务切换 一 ...
- Masonry练习
tableView的cell自动适应,scrollview自动适应,自定义自动布局控件 demo链接:http://pan.baidu.com/s/1jHsrGwQ